
34 Lecture 34: April 27

Last time

• Theoretical background of linear model

Today

• Course evaluation (7/17)

• Multivariate Normal and Cochran’s theorem

• Bootstrap

• Logistic Regression (JF Chapter 14)

Additional reference

“Essential Statistical Inference Theory and Methods” by Dr. Dennis D. Boos and Dr. L. A.
Stefanski.
Dr. Hua Zhou’s Computational Statistics notes.

Normal distribution in scaler case

• A random variable Z has a standard normal distribution, denoted Z „ N p0, 1q, if

FZptq “ PrpZ ď tq “

ż t

´8

1
?

2π
e´z

2{2dz,

or equivalently Z has density

fZpzq “
1
?

2π
e´z

2{2, ´8 ă z ă 8

or equivalently, Z has moment generating function (mgf)

mZptq “ EpetZq “ et
2{2, ´8 ă z ă 8

• Non-standard normal random variable

– Definition 1: A random variable X has normal distribution with mean µ and
variance σ2, denoted X „ N pµ, σ2q, if

X “ µ` σZ

where Z „ N p0, 1q

– Definition 2: X „ N pµ, σ2q if

mXptq “ EpetXq “ etµ`σ
2t2{2, ´8 ă t ă 8

– In both definitions, σ2 “ 0 is allowed. If σ2 ą 0, it has a density

fXpxq “
1

?
2πσ

e´px´µq
2{2σ2

, ´8 ă x ă 8
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Multivariate normal distribution

– The standard multivariate normal is a vector of independent standard normals,
denoted Z „ N p0p, Ipq. The joint density is

fZpzq “
1

p2πqp{2
e´

řp
i“1 z

2
i {2.

The mgf is

mZptq “
p
ź

i“1

mZi
pt1q “

p
ź

i“1

et
2
i {2 “ et

T t{2.

– Consider the affine transformation X “ µ ` AZ where Z „ N p0p, Ipq. X has
mean and variance

EpXq “ µ, VarpXq “ AAT

and the moment generating function is

mXptq “ Epet
T pµ`AZq

q “ et
TµEpet

TAZ
q “ et

Tµ`tTAAT t{2.

– X P Rp has a multivariate normal distribution with mean µ P Rp and covariance
V P Rpˆp,V ľp.s.d. 0, denoted X „ N pµ,Vq, if its mgf takes the form

mXptq “ et
Tµ`tTVT t{2, t P Rp

– if X „ N pµ,Vq and V is non-singular, then

∗ V “ AAT for some non-singular A

∗ A´1pX´ µq „ N p0p, Ipq

∗ The density of X is

fXpxq “
1

p2πqp{2|V|1{2
e´px´µq

TV´1px´µq{2.

– (Any affine transform of normal is normal) If X P Rp,X „ N pµ,Vq and Y “ a`BX,
where a P Rq and B P Rqˆp, then Y „ N pa`Bµ,BVBT

q.

– (Marginal of normal is normal) If X P Rp,X „ N pµ,Vq, then any subvector of
X is normal too.

– A convenient fact about normal random variables/vectors is that zero correla-
tion/covariance implies independence.
If X „ N pµ,Vq and is partitioned as

X “

»

—

–

X1
...

Xm

fi

ffi

fl

, µ “

»

—

–

µ1
...

µm

fi

ffi

fl

, V “

»

—

–

V11 . . . V1m
...

...
Vm1 . . . Vmm

fi

ffi

fl

then X1, . . . ,Xm are jointly independent if and only if Vij “ 0 for all i ‰ j.
Proof:
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Independence and Cochran’s theorem

• (Independence between two linear forms of a multivariate normal) Let X „ N pµ,Vq,
Y1 “ a1 `B1X and Y2 “ a2 `B2X. Then Y1 and Y2 are independent if and only if
B1VBT

2 “ 0.
Proof:

• Consider the normal linear model y „ N pXb, σ2Inq

– Using A “ p1{σ2qpI´PXq, we have

SSE{σ2
“ ||ε̂||22{σ

2
“ yTAy „ χ2

n´r,

where r “ rankpXq. Note the noncentrality parameter is

φ “
1

2
pXbqT p1{σ2

qpI´PXqpXbq “ 0 for all b.

– Using A “ p1{σ2qPX, we have

SSR{σ2
“ ||ŷ||22{σ

2
“ yTAy „ χ2

rpφq,

with the noncentrality parameter

φ “
1

2
pXbqT p1{σ2

qPXpXbq “
1

2σ2
||Xb||22.

– The joint distribution of ŷ and ε̂ is
„

ŷ
ε̂



“

„

PX

In ´PX



y „ N
ˆ„

Xb
0n



,

„

σ2PX 0
0 σ2pI´PXq

˙

.

So ŷ is independent of ε̂. Thus ||ŷ||22{σ
2 is independent of ||ε̂||22{σ

2 and

F “
||ŷ||22{σ

2{r

||ε̂||22{σ
2{pn´ rq

„ Fr,n´rp
1

2σ2
||Xb||22q.

• (Independence between linear and quadratic forms of a multivariate normal) Let X „

N pµ,Vq. Let A be symmetric with rank s. Then BX and XTAX are independent if
BVA “ 0.
Proof:

• (Independence between two quadratic forms of a multivariate normal) Let X „ N pµ,Vq,
A be symmetric with rank r, and B be symmetric with rank s. If BVA “ 0, then
XTAX and XTBX are independent.
Proof:

• (Cochran’s theorem) Let y „ N pµ, σ2Inq and Ai, i “ 1, . . . , k be symmetric idempo-
tent matrix with rank si. If

řk
i“1 Ai “ In, then p1{σ2qyTAiy are independent χ2

si
pφiq,

with φi “
1

2σ2µ
TAiµ and

řk
i“1 si “ n.

Proof:
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• Application to the one-way ANOVA: yij “ µ`αi` εij. We have the classical ANOVA
table

Source df Projection SS Noncentrality

Mean 1 P1 SSM “ nȳ2 1
2σ2npµ` ᾱq

2

Group a´ 1 PX ´P1 SSA “
řa
i“1 niȳ

2
i ´ nȳ

2 1
2σ2

řa
i“1 nipαi ´ ᾱq

2

Error n´ a I´PX SSE “
řa
i“1

řni

j“1pyij ´ ȳiq
2 0

Total n I SST “
ř

i

ř

j y
2
ij

1
σ2

řa
i“1 nipµ` αiq

2

Bootstrap

We follow JF Chapter 21 to discuss the version of nonparametric bootstrap here. The term
bootstrapping, coined by Efron (1979), refers to using the sample to learn about the sampling
distribution of a statistic without reference to external assumptions – as in “pulling oneself
up by one’s bootstraps.”

Bootstrapping offers a number of advantages:

• The bootstrap is quite general, although there are some cases in which it fails.

• Because it does not require distributional assumptions (such as normally distributed
errors), the bootstrap can provide more accurate inferences when the data are not well
behaved or when the sample size is small.

• It is possible to apply the bootstrap to statistics with sampling distributions that are
difficult to derive, even asymptotically.

• It is relatively simple to apply the bootstrap to complex data collection plans.

Bootstrap standard errors

For simplicity, we start with an iid sample Y1, . . . , Yn with each Yi having distribution function
F , and a real parameter θ is estimated by θ̂. When necessary, we think of θ̂ as a function of
the sample, θ̂pY1, . . . , Ynq. The variance of θ̂ is then

VarF pθ̂q “

ż

!

θ̂py1, . . . , ynq ´ EF pθ̂q
)2

dF py1q . . . dF pynq,

where

EF pθ̂q “

ż

θ̂py1, . . . , ynqdF py1q . . . dF pynq.

The nonparametric bootstrap estimate of Varpθ̂q is just to replace F by the empirical distri-
bution function Fnpyq “ n´1

řn
i“1 IpYi ď yq:

VarFnpθ̂q “

ż

!

θ̂py1, . . . , ynq ´ EFnpθ̂q
)2

dFnpy1q . . . dFnpynq,
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Please refer to Chapter 11 of Boos and Stefanski for a complete discussion.

A practical bootstrapping procedure follows:

1. Create r number of bootstrap replications or pseudo-replicates – that is, for each boot-
strap sample (replicate) b “ 1, . . . , r, we randomly draw n observations tY ˚b1 , Y

˚
b2
, . . . , Y ˚bnu

with replacement from the original sample tY1, Y2, . . . , Ynu.

2. Obtain an estimate θ̂˚b of each bootstrap sample.

3. Use the distribution of θ̂˚b to estimate properties of the sampling distribution of θ̂.For

example, the sample standard deviation of θ̂˚b gives the bootstrap standard error esti-

mates of SE
Ź˚

pθ̂q.

Bootstrap example

We use the example in JF 21.1 for illustration. Imagine that we sample (fake) ten working,
married couples, determining in each case the husband’s and wife’s income, as recorded in
the table (JF table 21.3) below.

Observation husband’s Income Wife’s Income Difference Yi

1 34 28 6

2 24 27 -3

3 50 45 5

4 54 51 3

5 34 28 6

6 29 19 10

7 31 20 11

8 32 40 -8

9 40 33 7

10 34 25 9

A point estimate of this population mean difference µ is the sample mean,

Ȳ “

ř

Yi
n

“ 4.6

Elementary statistical theory tells us that the standard deviation of the sampling distribution
of sample means is SDpȲ q “ σ{

?
n, where σ is the population standard deviation of Y .

Because we do not know σ in most real applications, the usual estimator of σ is the sample
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standard deviation

Ŝ “

d

ř

pYi ´ Ȳ q2

n´ 1

and we obtain the 95% confidence interval by

Ȳ ˘ tn´1,0.025
Ŝ
?
n

In the present case, Ŝ “ 5.948, SE
Ź

pȲ q “ 5.948{
?

10 “ 1.881, and t9,0.025 “ 2.262. The 95%
confidence interval for the population mean µ is therefore

4.6˘ 2.262ˆ 1.881 “ 4.6˘ 4.255

or equivalently,
0.345 ă µ ă 8.855

To illustrate the bootstrap procedure,

1. We can draw r “ 2000 bootstrap samples (using a computer), each of size n “ 10,
from the original data given in table 21.3.

2. We then calculate the mean Ȳ ˚b , with b “ 1, . . . , r for each bootstrap sample.

3. The bootstrap estimate of the standard error is then given by SE
Ź˚

pȲ ˚q “

c

řr
b“1pȲ

˚
b ´

¯̄Y ˚q
2

r´1

From the 2000 replicates that Dr. Fox drew, he obtained ¯̄Y ˚ “ 4.693 and SE
Ź

pȲ ˚q “ 1.750.
Both are quite close to the theoretical values (read JF 21.1 for a discussion over

a

n{n´ 1
for the differences in calculating the standard errors, which is often negligible, especially
when n is large).

Now, we can get a bootstrap estimate for the 100p1´ αq% confidence interval by using the
α{2 and p1´ α{2q quantiles of the bootstrap sampling distribution of θ̂˚b which means

1. We order θ̂˚b such that θ̂˚
p1q ď θ̂˚

p2q ď ¨ ¨ ¨ ď θ̂˚
prq.

2. Find the two quantiles θ̂˚
plowerq “ θ̂˚

pα{2ˆrq and θ̂˚
pupperq “ θ̂˚

pp1´α{2qˆrq

3. Construct the confidence interval by pθ̂˚
plowerq, θ̂

˚
pupperqq.

In this case,
lower “ 2000p0.05{2q “ 50

upper “ 2000p1´ 0.05{2q “ 1950

Ȳ ˚p50q “ 0.7

Ȳ ˚p1950q “ 7.8

0.7 ă µ ă 7.8
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Bias-corrected bootstrap intervals

We introduce the bias-corrected version of the above bootstrap intervals through two “cor-
rection factors” Z and A defined below:.

1. Calculate

Z ” Φ´1

«

řr
b“1 Ipθ̂

˚
b ă θ̂q

r

ff

where Φ´1p¨q is the inverse of the standard-normal distribution and
řr
b“1 Ipθ̂

˚
b ă θ̂q{r is

the proportion of bootstrap replicates below the estimate θ̂. If the bootstrap sampling
distribution is symmetric and if θ̂ is unbiased, then this proportion will be close to 0.5,
and the “correction factor” Z will be close to 0.

2. Let θ̂p´iq represent the value of θ̂ produced when ith observation is deleted from the

sample (known as the jackknife values of θ̂). There are n of these quantities. Let

θ̄ “
ř

θ̂p´iq{n. Then calculate

A ”

řn
i“1pθ̄ ´ θ̂p´iqq

3

6
”

řn
i“1pθ̄ ´ θ̂p´iqq

2
ı3{2

With the correction factors Z and A, compute

A1 ” Φ

„

Z `
Z ´ zα{2

1´ ApZ ´ zα{2q



A2 ” Φ

„

Z `
Z ` zα{2

1´ ApZ ` zα{2q



And the corrected interval is

θ̂˚plowerq ă θ ă θ̂˚pupperq

where lower˚ “ rA1 and upper˚ “ rA2 (rounding or interpolating as required).

When the correction factors Z and A are both 0, A1 “ Φp´zα{2q “ α{2 and A2 “ Φpzα{2q “
1´ α{2.

For the 2000 bootstrap samples that Dr. Fox drew, there are 926 bootstrapped means below
Ȳ “ 4.6, and so Z “ Φ´1p926{2000q “ ´0.09288. The Ȳp´iq are 4.444, 5.444, . . . , 4.111. And
A “ ´0.05630. Using the correction factors Z and A,

A1 “ Φ

„

´0.09288`
´0.09288´ 1.96

1´ r´0.05630p´0.09288´ 1.96qs



“ Φp´2.414q “ 0.007889

A2 “ Φ

„

´0.09288`
´0.09288` 1.96

1´ r´0.05630p´0.09288` 1.96qs



“ Φp1.597q “ 0.9449
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Multiplying by r, we have 2000ˆ 0.007889 « 16 and 2000ˆ 0.9449 « 1890, from which

Ȳ ˚p16q ă µ ă Ȳ ˚p1890q

´0.4 ă µ ă 7.3

Logistic regression

So far, we only considered cases where the response variable is continuous. Logistic regression
belongs in the family of Generalized Linear Model that can be used for analyzing binary
responses.

Motivation Let p be the probability of a specific outcome. We are interested in how this
probability is affected by the explanatory variables. A naive approach could be:

p “ β0 ` β1x1 ` β2x2 ` ε

Problem p must be between 0 and 1.

Solution Model log odds of p (i.e. logit of p) which are defined as

odds “
p

1´ p
P r0,8q

logit “ logp
p

1´ p
q P p´8,8q

This forms the logistic regression

logitppq “ logp
p

1´ p
q “ β0 ` β1x1 ` β2x2

Note that

1. Increase in log odds ðñ increase in p.
Decrease in log odds ðñ decrease in p.

2. No ε in logistic regression because we observe a binary outcome yi, not p itself.

The density
fpyi|piq “ pyii p1´ piq

1´yi

“ eyi logppiq`p1´yiq logp1´piq

“ e
yi logp

pi
1´pi

q`logp1´piq

where

Epyiq “ pi “
ex

T
i β

1` ex
T
i β

pmean function, inverse link functionq

xTi β “ logp
pi

1´ pi
q plogit link functionq

We obtain parameter estimates by maximum likelihood. Read page 131 - page 133 of Dr. Hua
Zhou’s Computational Statistics notes (link) for algorithms to find these MLE (maximum
likelihood estimates).
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