
Math 6040/7260 Linear Models
Mon/Wed/Fri 11:00am - 11:50am

Instructor: Dr. Xiang Ji, xji4@tulane.edu

1 Lecture 1:Jan 26

Today

• Introduction

• Introduce yourself

• Course logistics

What is this course about?

The term “linear models” describes a wide class of methods for the statistical analysis of
multivariate data. The underlying theory is grounded in linear algebra and multivariate
statistics, but applications range from biological research to public policy. The objective of
this course is to provide a solid introduction to both the theory and practice of linear models,
combining mathematical concepts with realistic examples.

Prerequisite

• Must: Introduction to Probability

• Good to have: Mathematical Statistics, Scientific Computation II

A hierarchy of linear models

• The linear mean model:
y
nˆ1

“ X
nˆp

β
pˆ1
` ε

nˆ1

where E pεq “ 0. Only assumption is that errors have mean 0.

• Gauss-Markov model:
y “ Xβ ` ε

where E pεq “ 0 and Var pεq “ σ2I. Uncorrelated errors with constant variance.

• Aitken model or general linear model:

y “ Xβ ` ε

where E pεq “ 0 and Var pεq “ σ2V. V is fixed and known.

• Variance components models: y „ NpXβ, σ2
1V1`σ

2
2V2`¨ ¨ ¨`σ

2
rVrq with V1,V2, . . . ,Vr

known.

1



• General mixed linear Model:
y “ Xβ ` ε

where E pεq “ 0 and Var pεq “ Σpθq.

• Generalized linear models (GLMs). Logistic regression, probit regression, log-linear
model (Poisson regression), ... Note the difference from the general linear model.
GLMs are generalization of the concept of linear models. They are covered in Math
7360 - Data Analysis class (https://tulane-math-7360-2021.github.io/).

Syllabus

Check course website frequently for updates and announcements.

https://tulane-math-7260-2022.github.io/

HW submission

Through Github with demo on Friday class.

Presentations

Let me know your pick by the end of Friday (01/28/2022).

Last year comments

1. Experience in this course

• Overall, I had a pretty good experience in this course. It moved quickly, but that
is expected from this level of course. Sometimes it was hard to stay engaged with
the lectures and to really absorb the course material. Because the lectures moved
so fast, I really appreciated how Professor made the full notes available at the
time of the lecture. I would have liked if there were a few more examples with
the notes, as sometimes the homework felt disjoint from the notes.
Response: I will try to move slower this semester. I will start lab sessions earlier
too.

• The professor is an extremely intelligent, kind, and understanding professor. He
prioritizes in making sure that we understand the material and seeing how the
material can be applied. His lecture notes were a godsend because the texts could
be a bit ambiguous at times but he elucidated the material in such a comprehen-
sible manner.
Response: I will try to fix the left-over typos.

• Mentioned in class from other students/internal evaluation, conveying the math-
ematical concepts through the presentation is not a good idea to follow the class
in real-time. Prepared presentation can give rise to a distraction on what we have
been going over.
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Response: I am still delivering this class in hybrid-mode. I found the presen-
tations fit online teaching better. I think the difficulty might be caused by (1)
fast moving lecture (2) I only realized the need of reviewing basic concepts of
probability almost a quarter into the semester...

• I found the setup of the course not very engaging. Additionally, many of the class
notes came directly from the additional sources with no additional information or
explanation, which I found to be not very helpful.
Response: I actually like them. I was the guinea pig to test them.

• Easily help us to understand the main course, and the notes and details are great.
Response: There will be notes.

• Moves very quickly and can be hard to keep up with. Sometimes instructions are
unclear.
Response: I will try to slow down.

• Both the instructor and the TA were helpful. It was hard to follow along in class
though.
Response: We don’t have TA this time. Make use of the office hour. And I have
to say, it needs effort to ace in this class.

2. Strong aspects of this course

• Having the lecture notes and labs available was very helpful. Professor was also
always very nice and accommodating, and willing to meet with me when I needed
help. He also always responded to student feedback, if we asked for an extra day
or two on the homework or something like that.
Response: Here is an example of correctly using the office hours.

• His lecture notes and the lab sessions.
Response: They will be there again.

• Lab session is necessarily required to this class. A lot of computations in the class
would be done by computer due to the complexity, and students are expected to
handle with the computer programming properly at a desired level. The course
can be an introduction to the statistical computation, which does not exist in the
mathematics department.
Response: Hmm, there is a course Math 7360 Data Analysis that focuses more on
the computational side.

• I appreciated the homework reviews in class and felt these helped clarify the
material.
Response: Of course, the reviews will be there again. The purpose of the course
is for you to learn.

• Grading was easy which made up for the rigor.
Response: Don’t rely on this...

• Really appreciate that Professor Xiang made such a neat and tidy notes for us.
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It is really helpful for me to review. And notes have a great interaction with
us, Professor Xiang also leaves some questions to help us think about the logic
behind.
Response: Well, Xiang is my first name. Please call me Prof. X.

• Prof. Xiang was highly organized and wanted his students to understand the
course content more than he made them worry about grades. I learned a lot
about Linear Models and feel confident applying the course content professionally
and academically. I wish most of the Math department had his teaching style
and implemented his course documents and organization structure. Prof. Xiang
made the course content in class digestible and if I needed to review the material
I could easily find it through his course notes and textbook. I wish I could say
the same about my other courses.
Response: Hmm, I like Prof. X. better.

• I really appreciated the emphasis on learning. It allowed for most students to
take it at the pace that was good for them.
Response: Please don’t let your score rely on this comment.

3. There will be an internal mid-term-ish evaluation for this course. Will remember to
go over them.
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2 Lecture 2:Jan 28

Last time

• Introduction

• Course logistics

Today

• Reply to the “Presentation Dates” thread on Canvas by the end of today.

• Introduce yourself (remind remote students to record a short video)

– basic info (name, department, year, ...)

– why taking this course

• Git

• Linear algebra: vector and vector space, rank of a matrix (maybe)

What is git?

Git is currently the most popular system for version control according to Google Trend.
Git was initially designed and developed by Linus Torvalds in 2005 for Linux kernel devel-
opment. Git is the British English slang for unpleasant person.

Why using git?

• GitHub is becoming a de facto central repository for open source development.

• Advertise yourself through GitHub (e.g., host a free personal webpage on GitHub).

• a skill that employers look for (according to this AmStat article).

Git workflow

Figure 2.1 shows its basic workflow.

What do I need to use Git?

• A Git server enabling multi-person collaboration through a centralized repository.

• A Git client on your own machine.

– Linux: Git client program is shipped with many Linux distributions, e.g., Ubuntu
and CentOS. If not, install using a package manager, e.g., yum install git on
CentOS.

– Mac: follow instructions at https://www.atlassian.com/git/tutorials/install-git.
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Figure 2.1

– Windows: Git for Windows at https://gitforwindows.org (GUI) aka Git Bash.

• Do not totally rely on GUI or IDE. Learn to use Git on command line, which is needed
for cluster and cloud computing.

Git survival commands

• git pull synchronize local Git directory with remote repository.

• Modify files in local working directory.

• git add FILES add snapshots to staging area

• git commit -m “message” store snapshots permanently to (local) Git repository

• git push push commits to remote repository.

Git basic usage

Working with your local copy.

• git pull : update local Git repository with remote repository (fetch + merge).
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• git log FILENAME : display the current status of working directory.

• git diff : show differences (by default difference from the most recent commit).

• git add file1 file2 ... : add file(s) to the staging area.

• git commit : commit changes in staging area to Git directory.

• git push : publish commits in local Git repository to remote repository.

• git reset –soft HEAD 1 : undo the last commit.

• git checkout FILENAME : go back to the last commit, discarding all changes made.

• git rm FILENAME : remove files from git control.

Git demonstration

Show how to create a private git repository for HW and Exam submissions.

On GitHub

• Obtain student developer pack.

• Create a private repository math-6040-2022-spring (please substitute 6040 by 7260

if you are taking the graduate level). Add xji3 as your collaborators with write
permission (instruction).

On your local machine:

• clone the repository: please refer to this webpage with instructions for your operating
system.

• enter the folder: cd math-6040-2022-spring .

• after finishing the rest of the questions, save your file inside your git repository folder
math-6040-2022-spring with name hw1.pdf (for example). Please make it human-
readable.

• now using git commands to stage this change: git add hw1.pdf

• commit: git commit -m “hw1 submission” (remember to replace the quotation mark)

• push to remote server: git push

• tag version hw1: git tag hw1 and push: git push --tags .

Take a look at the tags on GitHub (instructions).

When submitting your hw, please email your instructor (xji4@tulane.edu) a link to your tag
(instructions).
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3 Lecture 3:Jan 25

Last time

• Git

Today

• Linear algebra: vector and vector space, rank of a matrix

• Column space and Nullspace (JM Appendix A)

Notations

y
nˆ1

“ X
nˆp

β
pˆ1
` ε

nˆ1

¨

˚

˚

˚

˝

y1

y2
...
yn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

β1

β2
...
βp

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

ε1
ε2
...
εn

˛

‹

‹

‹

‚

• All vectors are column vector

• Write dimensions underneath as in X
nˆp

or as X P Rnˆp

• Bold upper-case letters for Matrices. Bold lower-case letters for Vectors.

Vector and vector space

(from JM Appendix A)

• A set of vectors x1, . . . ,xn are linearly dependent if there exist coefficients cj for
j “ 1, 2, . . . , n such that

řn
j“1 cjxj “ 0 and ||c||2 “

řn
j“1 c

2
j ą 0. They are linearly

independent if
řn
j“1 cjxj “ 0 implies (i.e. ùñ ) cj “ 0 for all j.

• Two vectors are orthogonal to each other, written xKy, if their inner product is 0, that
is xTy “ yTx “

ř

j

xjyj “ 0.

• A set of vectors xp1q,xp2q, . . . ,xpnq are mutually orthogonal iff (i.e. ðñ ) xpiqTxpjq “ 0
for @i ‰ j.

• The most common set of vectors that are mutually orthogonal are the elementary
vectors ep1q, ep2q, . . . , epnq, which are all zero, except for one element equal to 1, so that
e
piq
i “ 1 and e

piq
j “ 0, @j ‰ i.

• A vector space S is a set of vectors that are closed under addition and scalar multipli-
cation, that is
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– if xp1q and xp2q are in S, then c1x
p1q ` c2x

p2q is in S.

• A vector space S is generated or spanned by a set of vectors xp1q,xp2q, . . . ,xpnq, written as
S “ spantxp1q,xp2q, . . . ,xpnqu, if any vector x in the vector space is a linear combination
of xi, i “ 1, 2, . . . , n.

• A set of linearly independent vectors that generate or span a space S is called a basis
of S.

Example A.1

Let

xp1q “

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

,xp2q “

»

—

—

–

1
2
3
4

fi

ffi

ffi

fl

, and xp3q “

»

—

—

–

´3
´1
1
3

fi

ffi

ffi

fl

.

Then xp1q and xp2q are linearly independent, but xp1q, xp2q, and xp3q are linearly dependent
since 5xp1q ´ 2xp2q ` xp3q “ 0

Rank

Some matrix concepts arise from viewing columns or rows of the matrix as vectors. Assume
A P Rmˆn.

• rankpAq is the maximum number of linearly independent rows or columns of a matrix.

• rankpAq ď mintm,nu.

• A matrix is full rank if rankpAq “ mintm,nu. It is full row rank if rankpAq “ m. It is
full column rank if rankpAq “ n.

• a square matrix A P Rnˆn is singular if rankpAq ă n and non-singular if rankpAq “ n.

• rankpAq “ rankpAT q “ rankpATAq “ rankpAAT q. (Show this in HW.)

• rankpABq ď mintrankpAq, rankpBqu. (Hint: Columns of AB are spanned by columns
of A and rows of of AB are spanned by rows of B.)

• if Ax “ 0m for some x ‰ 0n, then rankpAq ď n´ 1.

Column space

Definition: The column space of a matrix, denoted by CpAq is the vector space spanned by
the columns of the matrix, that is,

CpAq “ tx : there exists a vector c such that x “ Acu.

This means that if x P CpAq, we can find coefficients cj such that

x “
ÿ

j

cja
pjq
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where apjq “ A¨j denotes the jth column of matrix A.

• The column space of a matrix consists of all vectors formed by multiplying that matrix
by any vector.

• The number of basis vectors for CpAq is then the number of linearly independent
columns of the matrix A, and so, dim pCpAqq “ rankpAq.

• The dimension of a space is the number of vectors in its basis.

Example A.2

Let A “

»

—

—

–

1 1 ´3
1 2 ´1
1 3 1
1 4 3

fi

ffi

ffi

fl

and c “

»

–

5
4
3

fi

fl. Show that Ac is a linear combination of columns

in A.

solution:

Ac “

»

—

—

–

1ˆ 5` 1ˆ 4` p´3q ˆ 3
1ˆ 5` 2ˆ 4` p´1q ˆ 3

1ˆ 5` 3ˆ 4` 1ˆ 3
1ˆ 5` 4ˆ 4` 3ˆ 3

fi

ffi

ffi

fl

“

»

—

—

–

0
10
20
30

fi

ffi

ffi

fl

.

You could recognize that

Ac “ 5ˆ

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

` 4ˆ

»

—

—

–

1
2
3
4

fi

ffi

ffi

fl

` 3ˆ

»

—

—

–

´3
´1
1
3

fi

ffi

ffi

fl

“ 5ap1q ` 4ap2q ` 3ap3q “

»

—

—

–

0
10
20
30

fi

ffi

ffi

fl

.

Result A.1

rankpABq ď minprankpAq, rankpBqq.

proof: Each column of AB is a linear combination of columns of A (i.e. pABq¨j “ Abpjq),
so the number of linearly independent columns of AB cannot be greater than that of A.
Similarly, rankpABq “ rankpBTAT q, the same argument gives rankpBT q as an upper bound.

Result A.2

• (a) If A “ BC, then CpAq Ď CpBq.

• (b) If CpAq Ď CpBq, then there exists a matrix C such that A “ BC.

proof: For (a), any vector x P CpAq can be written as x “ Ad “ BpCdq.
For (b), A¨j P CpBq, so that there exists a vector cpjq such that A¨j “ Bcpjq. The matrix
C “ pcp1q, cp2q, . . . , cpnqq satisfies that A “ BC.
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Null space

Definition: The null space of a matrix, denoted by N pAq, is N pAq “ ty : Ay “ 0u.

Result A.3

If A has full-column rank, then N pAq “ t0u.

proof: Matrix A has full-column rank means its columns are linearly independent, which
means that Ac “ 0 implies c “ 0.

Theorem A.1

Assume A P Rmˆn, then dimpCpAqq “ r and dimpN pAqq “ n´ r, where r “ rankpAq.

See JM Appendix Theorem A.1 for the proof.
proof: Denote dimpN pAqq by k, to be determined, and construct a set of basis vectors
for N pAq :

 

up1q,up2q, . . . ,upkq
(

, so that Aupiq “ 0, for i “ 1, 2, . . . , k. Now, construct

a basis for Rn by adding the vectors
 

upk`1q, . . . ,upnq
(

, which are not in N pAq. Clearly,

Aupiq P CpAq for i “ k` 1, . . . , n, and so the span of these vectors form a subspace of CpAq.
These vectors

!

Aupiq, i “ k ` 1, . . . , n
)

are also linearly independent from the following ar-

gument: suppose
řn
i“k`1 ciAupiq “ 0; then

řn
i“k`1 ciAupiq “ A

“
řn
i“k`1 ciu

piq
‰

“ 0, and

hence
řn
i“k`1 ciu

piq is a vector in N pAq. Therefore, there exist bi such that
řn
i“k`1 ciu

piq “
řk
i“1 biu

piq, or
řk
i“1 biu

piq ´
řn
i“k`1 ciu

piq “ 0. Since
 

upiq
(

form a basis for Rn, ci must all

be zero. Therefore Aupiq, i “ k ` 1, . . . , n are linearly independent. At this point, since
spantAupk`1q, . . . ,Aupnqu Ď CpAq, dim pCpAqq is at least n ´ k. Suppose there is a vector
y that is in CpAq, but not in the span; then there exists upn`1q so that y “ Aupn`1q and
upn`1q is linearly independent of tupk`1q, . . . ,upnqu (and clearly not in N pAq), making n` 1
linearly independent vectors in Rn. Since that is not possible, the span is equal to CpAq and
dimpCpAqq “ n´ k “ r “ rankpAq, so that k “ dimpN pAqq “ n´ r.

Interpretation: “dimension of column space + dimension of null space = # columns”
Mis-Interpretation: Columns space and null space are orthogonal complement to each other.
They are of different orders in general! Next result gives the correct statement.
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4 Lecture 4: Feb 2

Last time

• Linear algebra: vector and vector space, rank of a matrix

• Column space and Nullspace (JM Appendix A)

Today

• Probability review

Reference:

• Statistical Inference, 2nd Edition, by George Casella & Roger L. Berger

• Review of Probability Theory by Arian Maleki and Tom Do

Probability theory review

A few basic elements to define a probability on a set:

• Sample space S is the set that contains all possible outcomes of a particular experi-
ment.

• An event is any collection of possible outcomes of an experiment, that is , any subset
of S (including S itself).

• Event operations

1. Union: The union of A and B, written AY B, is the set of elements that belong
to either A or B or both:

AYB “ tx : x P A or x P Bu

2. Intersection: The intersection of A and B, written A X B, is the set of elements
that belong to both A and B:

AXB “ tx : x P A and x P Bu

3. Complementation: The complement of A, written as Ac, is the set of all elements
that are not in A:

Ac “ tx : x R Au.

• Sigma algebra (or Borel field): A collection of subsets of S is called a sigma algebra
(or Borel field), denoted by B, if it satisfies the following three properties:

1. H P B (the empty set is an element of B)

2. If A P B, then Ac P B (B is closed under complementation).
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3. If A1, A2, ¨ ¨ ¨ P B, then Y8i“1Ai P B (B is closed under countable unions).

• Axioms of probability: Given a sample space S and an associated sigma algebra
B, a probability function is a function Prpq with domain B that satisfies

1. PrpAq ě 0 for all A P B

2. PrpSq “ 1.

3. If A1, A2, ¨ ¨ ¨ P B are pairwise disjoint, then PrpY8i“1Aiq “
ř8

i“1 PrpAiq.

Properties:

If Prpq is a probability function and A and B are any sets in B, then

• PrpHq “ 0, where H is the empty set
Proof: 1 “ PrpSq “ PrpS YHq

• PrpAq ď 1
Proof: see below and remember PrpAcq ě 0

• PrpAcq “ 1´ PrpAq
Proof: 1 “ PrpSq “ PrpAY Acq “ PrpAq ` PrpAcq

• PrpB X Acq “ PrpBq ´ PrpAXBq
Proof: B “ tB X Au Y tB X Acu

• PrpAYBq “ PrpAq ` PrpBq ´ PrpAXBq
Proof: AYB “ AY tB X Acu and use the above property.

• PrpAYBq “ PrpAq ` PrpB X Acq “ PrpAq ` PrpBq ´ PrpAXBq

• If A Ă B, then PrpAq ď PrpBq.
Proof: If A Ă B, then AXB “ A and use PrpB X Acq “ PrpBq ´ PrpAXBq.

Conditional probability

Definition: IfA andB are events in S, and PrpBq ą 0, then the conditional probability of A given B,
written PrpA|Bq, is

PrpA|Bq “
PrpAXBq

PrpBq

Note that what happens in the conditional probability calculation is that B becomes the
sample space: PrpB|Bq “ 1, in other words, PrpA|Bq is the probability measure of the event
A after observing the occurrence of event B.

Definition: Two events A and B are statistically independent if PrpAXBq “ PrpAqPrpBq.
When A and B are independent events, then PrpA|Bq “ PrpAq and the following pairs are
also independent
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• A and Bc

proof:
PrpAXBc

q “ PrpAq ´ PrpAXBq

“ PrpAq ´ PrpAqPrpBq

“ PrpAqp1´ PrpBqq

“ PrpAqPrpBc
q

• Ac and B

• Ac and Bc

Random variables

Definition: A random variable is a function from a sample space S into the real numbers.

Experiment Random variable
Toss two dice X “ sum of the numbers

Toss a coin 25 times X “ number of heads in 25 tosses
Apply different amounts of

fertilizer to corn plants X “ yield{acre

Suppose we have a sample space
S “ ts1, . . . , snu

with a probability function Pr and we define a random variableX with range X “ tx1, . . . , xmu.
We can define a probability function PrX on X in the following way. We will observe X “ xi
if and only if the outcome of the random experiment is an sj P S such that Xpsjq “ xi.
Thus,

PrXpX “ xiq “ Prptsj P S : Xpsjq “ xjuq.

We will simply write PrpX “ xiq rather than PrXpX “ xiq.
A note on notation: Randon variables are often denoted with uppercase letters and the
realized values of the variables (or its range) are denoted by corresponding lowercase letters.

Distribution functions

Definition: The cumulative distribution function or cdf of a random variable (r.v.) X,
denoted by FXpxq is defined by

FXpxq “ PrpX ď xq, for all x.

The function F pxq is a cdf if and only if the following three conditions hold:

1. limxÑ8 F pxq “ 1.

2. F pxq is a nondecreasing function of x.

3. F pxq is right-continuous; that is, for every number x0, limxÓx0 “ F px0q.

14



Definition: A random variable X is continuous if F pxq is a continuous function of x. A
random variable X is discrete if F pxq is a step function of x.

The following two statements are equivalent:

1. The random variables X and Y are identically distributed.

2. FXpxq “ FY pxq for every x.

Density and mass functions

Definition: The probability mass function (pmf) of a discrete random variable X is given
by

fXpxq “ PrpX “ xq for all x.

Example (Geometric probabilities) For the geometric distribution, we have the pmf

fXpxq “ PrpX “ xq “

"

pp1´ pqx´1 for x = 1, 2, . . .
0 otherwise.

Definition: The probability density function or pdf, fXpxq, of a continuous random variable
X is the function that satisfies

FXpxq “

ż x

´8

fXptqdt for all x.

A note on notation: The expression “X has a distribution given by FXpxq” is abbreviated
symbolically by “X „ FXpxq”, where we read the symbol “„” as “ is distributed as”.

Example (Logistic distribution) For the logistic distribution, we have

FXpxq “
1

1` e´x

and, hence,

fXpxq “
d

dx
FXpxq “

e´x

p1` e´xq2
.

A function fXpxq is a pdf (or pmf) of a random variable X if and only if

1. fXpxq ě 0 for all x

2.
ř

x fXpxq “ 1 ppmfq or
ş8

´8
fXpxqdx “ 1 ppdfq.

Expectations

The expected value, or expectation, of a random variable is merely its average value, where
we speak of “average” value as one that is weighted according to the probability distribution.

Definition: The expected value or mean of a random variable gpXq, denoted by E pgpXqq,
is

E pgpXqq “

" ş8

´8
gpxqfXpxqdx if X is continuous

ř

xPX gpxqfXpxq “
ř

xPX gpxqPrpX “ xq if X is discrete,
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Exponential mean

Suppose X „ Exppλq distribution, that is, it has pdf given by

fXpxq “
1

λ
e´x{λ, 0 ď x ă 8, λ ą 0

Then E pXq is:

E pXq “

ż 8

0

1

λ
xe´x{λdx

“ ´xe´x{λ
ˇ

ˇ

8

0
`

ż 8

0

e´x{λdx

“

ż 8

0

e´x{λdx “ λ

Binomial mean

IF X has binomial distribution, i.e. X „ binomialpn, pq, its pmf is given by

PrpX “ xq “

ˆ

n
x

˙

pxp1´ pqn´x, x “ 0, 1, . . . , n,

where n is a positive integer, 0 ď p ď 1, and for every fixed pair n and p the pmf sums to 1.
The expected value of a binomial random variable is then given by

E pXq “
n
ÿ

x“0

x

ˆ

n
x

˙

pxp1´ pqn´x

Now, use the identity x

ˆ

n
x

˙

“ n

ˆ

n - 1
x - 1

˙

to derive the Expected value.

E pXq “
n
ÿ

x“1

x

ˆ

n
x

˙

pxp1´ pqn´x

“

n
ÿ

x“1

n

ˆ

n - 1
x - 1

˙

pxp1´ pqn´x

“

n´1
ÿ

y“0

n

ˆ

n - 1
y

˙

py`1
p1´ pqn´py`1q

“ np
n´1
ÿ

y“0

ˆ

n - 1
y

˙

pyp1´ pqn´1´y

“ np,

since the last summation must be 1, being the sum over all possible values of a binomialpn´
1, pq pmf.
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properties:

Let X be a random variable and let a, b and c be constants. Then for any functions g1pxq
and g2pxq whose expectations exist,

1. E pa ¨ g1pXq ` b ¨ g2pXq ` cq “ aE pg1pXqq ` bE pg2pXqq ` c.

2. If g1pxq ě 0 for all x, then E pg1pXqq ě 0.

3. If g1pxq ě g2pxq for all x, then E pg1pXqq ě E pg2pXqq.

4. If a ď g1pxq ď b for all x, then a ď E pg1pXqq ď b.

Moments

The various moments of a distribution are an important class of expectations.

Definition: For each integer n, the nth moment of X (or FXpxq), µ
1
n, is

µ1n “ E pXn
q.

The nth central moment of X, µn, is

µn “ E ppX ´ µqnq,

where µ “ µ11 “ E pXq.

Variance

Definition: The variance of a random variable X is its second central moment, Var pXq “
E ppX ´ EXq2q. The positive square root of Var pXq is the standard deviation of X.

Exponential variance

Let X have the exponential(λ) distribution, X „ Exppλq. Then the variance of X is

Var pXq “ E
`

pX ´ EXq2
˘

“ E
`

pX ´ λq2
˘

“

ż 8

0

px´ λq2
1

λ
e´x{λdx

“

ż 8

0

px2
´ 2xλ` λ2

q
1

λ
e´x{λdx

“ λ2.

properties

1. Var paX ` bq “ a2Var pXq.
proof:
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Var paX ` bq “ E
`

ppaX ` bq ´ E paX ` bqq2
˘

“ E
`

paX ´ aEXq2
˘

“ a2E
`

pX ´ EXq2
˘

“ a2Var pXq

2. Var pXq “ E pX2q ´ pE pXqq2.
proof:

Var pXq “ E pX ´ EXq2

“ E
`

X2
´ 2XE pXq ` pE pXqq2

˘

“ E
`

X2
˘

´ 2E pXqE pXq ` pE pXqq2

“ E
`

X2
˘

´ pE pXqq2

Moment generating function

Definition: Let X be a random variable with cdf FX . The moment generating function or
mgf of X (or FX), denoted by MXptq, is

MXptq “ E
`

etX
˘

,

provided that the expectation exists for t in some neighborhood of 0. That is, there exists
an h ą 0 such that for all t in ´h ă t ă h, E

`

etX
˘

exists. If the expectation does not exist
in a neighborhood of 0, we say that the moment generating function does not exist.

Property: If X has mgf MXptq, then

E pXn
q “M

pnq
X p0q,

where we define

M
pnq
X p0q “

dn

dtn
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

.
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6 Lecture 6: Feb 7

Last time

• Probability review

Today

• R basics

• Probability review

• Basic statistical concepts (PVR Chapter 1 - 2)

• Simple Linear Regression (JF Chapter 5)

Some common random variables

Discrete random variables

• X „ Bernoullippq (where 0 ď p ď 1):

Prpxq “

"

p if x “ 1
1´ p if x “ 0

• X „ Binomialpn, pq (where 0 ď p ď 1):

Prpxq “

ˆ

n
x

˙

pxp1´ pqn´x

• X „ Geometricppq (where 0 ď p ď 1):

Prpxq “ pp1´ pqx´1

• X „ Poissonpλq (where λ ą 0):

Prpxq “ e´λ
λx

x!

Continuous random variables

• X „ Uniformpa, bq (where a ă b):

fpxq “

"

1
b´a

if a ď x ď b

0 otherwise

• X „ Exponentialpλq (where λ ą 0):

fpxq “

"

λe´λx if x ě 0
0 otherwise
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• X „ Normalpµ, σ2q:

fpxq “
1

?
2πσ

e´
1

2σ2
px´µq2

The following table provides a summary of some of the properties of these distributions.

Distribution PDF or PMF Mean Variance

Bernoullippq

"

p if x “ 1
1´ p if x “ 0

p pp1´ pq

Binomialpn, pq

ˆ

n
x

˙

pxp1´ pqn´x , for 0 ď k ď n np npp1´ pq

Geometricppq pp1´ pqx´1, for k “ 1, 2, . . . 1
p

1´p
p2

Poissonpλq e´λ λ
x

x!
, for k “ 1, 2, . . . λ λ

Uniformpa, bq 1
b´a

Ipa ď x ď bq a`b
2

pb´aq2

12

Gaussianpµ, σ2q 1?
2πσ

e´
1

2σ2
px´µq2 µ σ2

Exponentialpλq λe´λxIpx ě 0q 1
λ

1
λ2
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Statistics: its objectives and scope (PVR Chapter 1)

We will use the word statistics in a broader sense:
Statistics refers to a body of scientific principles and methodologies that are useful for ob-
taining information about a phenomenon or a large collection of items. Statistical methods
are techniques for using limited amounts of information to arrive at conclusions – called
statistical inferences – about the phenomenon or the collection of items of interest.

Population and sample population

A population (sometimes referred to as a statistical population) is a collection (or aggregate)
of measurements about which an inference is desired.

Example: An investigator is interested in evaluating the relationship between age, blood
sugar level, and blood cholesterol level of insulin-dependent diabetics who are on a special
experimental diet. The investigator wants to answer the following questions, among others:

1. How does the blood cholesterol level change with age and blood sugar level?

2. Are higher cholesterol levels associated with higher sugar levels?

3. Do older diabetics tend to have higher sugar and cholesterol levels?

What is the population of interest in this example? The population of interest is a collection
of measurements – each of which consists of three values (age, blood sugar level, and blood
cholesterol level) – for an insulin-dependent diabetic who is on the experimental diet.

Not that, in statistics, a measurement is one of the elements that form the population. In
certain populations, each measurement may consist of several values. Populations in which
each measurement

• is a single value are called univariate populations

• contains more than one value is called a multivariate population.

Sample and sample size

A sample consists of a finite number of measurements chosen from a population. The number
of measurements in a sample is called the sample size.

Example: Answers to the questions about associations between the age, blood sugar level,
and blood cholesterol level of diabetics can be based on measurements made on a sample
of, say, n “ 40 treated insulin-dependent diabetics. Such a sample is a collection of 40
measurements, each of which consists of three values: the age, blood sugar level, and blood
cholesterol level of a treated patient.

Statistical components of a research study

A typical research study consists of three stages. The statistical techniques useful in these
three stages are commonly known as statistical methods in research, and can be divided into
three groups:
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1. Methods for designing the research study

2. Methods for organizing and summarizing data

3. Methods for making inferences

In this course, we focus on the third stage that is to use the information in the samples
to make conclusions about populations (i.e. making inferences). The key statistical issue in
such inferences is their accuracy.

Example: Suppose that the average indoor radiation level in a sample of 15 homes built
on reclaimed phosphate mine lands is 0.032 WL (working level is a historical unit of con-
centration of radioactive decay products of radon). Then 0.032 WL could be regarded as an
estimate of the average indoor level in all homes built on reclaimed phosphate mine lands.

• How accurate is this estimate?

• Suppose there are a total of 4000 homes built on reclaimed lands, is our small sample
representative of the whole population?

• If our sample could be regarded as representative of the population, it would be rea-
sonable to expect that the difference between the estimated value of 0.032 WL and the
true mean radiation level for all homes will be small, but how do we get/estimate the
actual magnitude of this difference?

The natural question is whether it is possible to assess, with reasonable certainty, the mag-
nitude of the error in our estimate. For example, can we say, with a reasonable degree of
confidence, that the average level for the population of all homes will be within 0.001 WL
of the average value calculated from sample homes?

Types of populations (PVR Chapter 2.2)

Statistical populations can be classified into categories depending upon the characteristics
of the measurements contained in them.

• Univariate and multivariate populations

– In a univariate population, each measurement consists of a single value

– In a multivariate population, measurements consist of more than one value

• Real and conceptual populations

– The population of 4000 indoor radon levels is a real population

– The population of digestibility values for sheep fed June-harvested Pensacola
Bahia grass is a conceptual population.

• Finite and infinite populations

– A population may contain only a finite number of measurements, as in the case
of the population of indoor radon levels of 4000 homes
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– A population may have infinitely many measurements, as in the case of a concep-
tual population of potential digestibility measurements, in which every value in
the interval r0%, 100%s is a possible value of a measurement in the population.

• Quantitative and qualitative populations

– A measurement is said to be quantitative if its value can be interpreted on a
natural and meaningful scale

– A measurement is qualitative if its value serves the sole purpose of identifying
an object or a characteristic. The value of a qualitative measurement has no
numerical implications.

• Discrete and continuous populations

– A population is said to be discrete if the distinct values of the measurements
contained in it can be arranged in a sequence.

– A continuous population consists of measurements that take all the values in one
or more intervals of a real line.
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Simple linear regression

Figure 6.1 shows Davis’s data on the measured and reported weight in kilograms of 101
women who were engaged in regular exercise.
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Figure 6.1: Scatterplot of Davis’s data on the measured and reported weight of 101 women.
The dashed line gives y “ x.

It’s reasonable to assume that the relationship between measured and reported weight ap-
pears to be linear. Denote:

• measured weight by yi: response variable or dependent variable

• reported weight by xi: predictor variable or independent variable

• intercept: β0

• slope: β1

• residual/error term εi.

Then the simple linear regression model writes:

yi “ β0 ` β1xi ` εi.

For given pβ̂0, β̂1q values, the fitted value or predicted value for observation i is:

ŷi “ β̂0 ` β̂1xi.
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Therefore, the residual is
ε̂i “ yi ´ ŷi

Fitting a linear model

Choose the “best” values for β0, β1 such that

SSrEs “
n
ÿ

1

´

yi ´ pβ̂0 ` β̂1xiq
¯2

“

n
ÿ

1

pyi ´ ŷiq
2
“

n
ÿ

1

ε̂2i

is minimized. These are least squares (LS) estimates:

β̂0 “ ȳ ´ β̂1x̄

β̂1 “
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
.

Definition: The line satisfying the equation

y “ β̂0 ` β̂1x

is called the linear regression of y on x which is also called the least squares line.

For Davis’s data, we have

n “ 101

ȳ “
5780

101
“ 57.228

x̄ “
5731

101
“ 56.743

ÿ

pxi ´ x̄qpyi ´ ȳq “ 4435.9
ÿ

pxi ´ x̄q
2
“ 4539.3,

so that

β̂1 “
4435.9

4539.3
“ 0.97722

β̂0 “ 57.228´ 0.97722ˆ 56.743 “ 1.7776

Least squares estimates

The simple linear regression (SLR) model writes:

yi “ β0 ` β1xi ` εi.

The least squares estimates minimizes the sum of squared error (SSE) which is

SSrEs “
n
ÿ

1

´

yi ´ pβ̂0 ` β̂1xiq
¯2

“

n
ÿ

1

pyi ´ ŷiq
2
“

n
ÿ

1

ε̂2i .
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The least squares (LS) estimates (in vector form):

β̂ls “

ˆ

β̂0

β̂1

˙

“

˜

ȳ ´ β̂1x̄
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2

¸

.

Definition: The line satisfying the equation

y “ β̂0 ` β̂1x

is called the linear regression of y on x which is also called the least squares line.

SLR Model in Matrix Form
»

—

—

—

–

y1

y2
...
yn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β0 ` β1x1

β0 ` β1x2
...

β0 ` β1xn

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

ε1
ε2
...
εn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

y1

y2
...
yn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

„

β0

β1



`

»

—

—

—

–

ε1
ε2
...
εn

fi

ffi

ffi

ffi

fl

Jargons

• X is called the design matrix

• β is the vector of parameters

• ε is the error vector

• Y is the response vector.

The Design Matrix

Xnˆ2 “

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

Vector of Parameters

β2ˆ1 “

„

β0

β1



26



Vector of Error terms

εnˆ1 “

»

—

—

—

–

ε1
ε2
...
εn

fi

ffi

ffi

ffi

fl

Vector of Responses

Ynˆ1 “

»

—

—

—

–

y1

y2
...
yn

fi

ffi

ffi

ffi

fl

Gramian Matrix

XTX “

„

n
ř

i xi
ř

i xi
ř

i x
2
i



Therefore, we have

Y “ Xβ ` ε.

Assume the Gramian matrix has full rank (which actually should be the case, why?), we
want to show that

β̂ls “ pX
TXq´1XTY.

The inverse of the Gramian matrix is

pXTXq´1
“

1

n
ř

ipxi ´ x̄q
2

„
ř

i x
2
i ´

ř

i xi
´
ř

i xi n



Now we have

β̂ls “pX
TXq´1XTY

“
1

n
ř

ipxi ´ x̄q
2

„
ř

i x
2
i ´

ř

i xi
´
ř

i xi n

 „

1Tn
xT



y

“
1

n
ř

ipxi ´ x̄q
2

„
ř

i x
2
i ´

ř

i xi
´
ř

i xi n

 „
ř

i yi
ř

i xiyi



“
1

n
ř

ipxi ´ x̄q
2

„

p
ř

i x
2
i qp

ř

i yiq ´ p
ř

i xiqp
ř

i xiyiq
n
ř

i xiyi ´ p
ř

i xiqp
ř

i yiq



“

«

ȳ ´
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
x̄

ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2

ff
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7 Lecture 7: Feb 9

Last time

• SLR in Matrix Form

Today

• Simple correlation

• The statistical model of the SLR (JF chapter 6)

• Properties of the Least-Squares estimator

From last lecture: Assume the Gramian matrix has full rank (which actually should be the
case, why?)

XTX “

„

n
ř

i xi
ř

i xi
ř

i x
2
i



Proof: By Cauchy-Schwarz inequality, we have

n
ÿ

i

x2
i ě p

ÿ

i

xiq
2

where the equality holds only if all xi are equal.

Some properties:

• (a)
ř

xiε̂i “ 0.

• (b)
ř

ŷiε̂i “ 0 (HW1).

Proof: For (a), we look at
XT ε̂

“XT
pY ´Xβ̂q

“XT
rY ´XpXTXq´1XTYs

“XTY ´XTXpXTXq´1XTY

“XTY ´XTY

“0

Other quantities in Matrix Form

Fitted values

Ŷ “

»

—

—

—

–

ŷ1

ŷ2
...
ŷn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β̂0 ` β̂1x1

β̂0 ` β̂1x2
...

β̂0 ` β̂1xn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

„

β̂0

β̂1



“ Xβ̂
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Hat matrix

Ŷ “Xβ̂

Ŷ “XpXTXq´1XTY

Ŷ “HY

where H “ XpXTXq´1XT is called “hat matrix” because it turns Y into Ŷ.

Davis’s data example

For Davis’s data, we have

n “ 101

ȳ “
5780

101
“ 57.228

x̄ “
5731

101
“ 56.743

ÿ

pxi ´ x̄qpyi ´ ȳq “ 4435.9
ÿ

pxi ´ x̄q
2
“ 4539.3,

so that

β̂1 “
4435.9

4539.3
“ 0.97722

β̂0 “ 57.228´ 0.97722ˆ 56.743 “ 1.7776

Figure 7.1 shows Davis’s data on the measured and reported weight in kilograms of 101
women who were engaged in regular exercise.
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Figure 7.1: Scatterplot of Davis’s data on the measured and reported weight of 101 women.
The dashed line gives y “ x. The solid line gives the least squares line y “ β̂0 ` β̂1x.

Simple correlation

Having calculated the least squares line, it is of interest to determine how closely the line
fits the scatter of points. There are many ways of answering it. The standard deviation of
the residuals, SE, often called the standard error of the regression or the residue standard
error, provides one sort of answer. Because of estimation considerations, the variance of the
residuals is defined using degrees of freedom n´ 2:

S2
ε “

ř

ε̂2i
n´ 2

.

The residual standard error is,

Sε “

c

ř

ε̂2i
n´ 2

For the Davis’s data, the sum of squared residuals is
ř

ε̂2i “ 418.87, and thus the standard
error of the regression is

Sε “

c

418.87

101´ 2
“ 2.0569kg.

On average, using the least-squares regression line to predict measured weight from reported
weight results in an error of about 2 kg.
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Sum of squares:

• Total sum of squares (TSS) for Y: TSS “
ř

pyi ´ ȳq
2

• Residual sum of squares (RSS): RSS “
ř

pyi ´ ŷiq
2

• regression sum of squares (RegSS): RegSS “ TSS´ RSS “
ř

pŷi ´ ȳq
2

• RegSS` RSS “ TSS

Sample correlation coefficient

Definition: The sample correlation coefficient rxy of the paired data px1, y1q, px2, y2q, ...,
pxn, ynq is defined by

rxy “

ř

pxi ´ x̄qpyi ´ ȳq{pn´ 1q
a

ř

pxi ´ x̄q2{pn´ 1q ˆ
ř

pyi ´ ȳq2{pn´ 1q
“

sxy
sxsy

sxy is called the sample covariance of x and y:

sxy “

ř

pxi ´ x̄qpyi ´ ȳq

n´ 1

sx “
a

ř

pxi ´ x̄q2{pn´ 1q and sy “
a

ř

pyi ´ ȳq2{pn´ 1q are, respectively, the sample
standard deviations of X and Y .

Some properties of rxy:

• rxy is a measure of the linear association between x and y in a dataset.

• correlation coefficients are always between ´1 and 1:

´1 ď rxy ď 1

• The closer rxy is to 1, the stronger the positive linear association between x and y

• The closer rxy is to ´1, the stronger the negative linear association between x and y

• The bigger |rxy|, the stronger the linear association

• If |rxy| “ 1, then x and y are said to be perfectly correlated.

• β̂1 “
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
“

sxy
s2x
“ rxy

sy
sx

R-square

The ratio of RegSS to TSS is called the coefficient of determination, or sometimes, simply
“r-square”. it represents the proportion of variation observed in the response variable y
which can be “explained” by its linear association with x.

• In simple linear regression, “r-square” is in fact equal to r2
xy. (But this isn’t the case

in multiple regression.)
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• It is also equal to the squared correlation between yi and ŷi. (This is the case in
multiple regression.)

For Davis’s regression of measured on reported weight:

TSS “ 4753.8

RSS “ 418.87

RegSS “ 4334.9

Thus,

r2
“

4334.9

4753.8
“ 1´

418.87

4753.8
“ 0.9119

The statistical model of Simple Linear Regression

Standard statistical inference in simple regression is based on a statistical model that describes
the population or process that is sampled:

yi “ β0 ` β1xi ` εi

where the coefficients β0 and β1 are the population regression parameters. The data are
randomly sampled from some population of interest.

• yi is the value of the response variable

• xi is the explanatory variable

• εi represents the aggregated omitted causes of y (i.e., the causes of y beyond the
explanatory variable), other explanatory variables that could have been included in the
regression model, measurement error in y, and whatever component of y is inherently
random.

Key assumptions of SLR

The key assumptions of the SLR model concern the behavior of the errors, equivalently, the
distribution of y conditional on x:

• Linearity. The expectation of the error given the value of x is 0: E pεq ” E pε|xiq “ 0.
And equivalently, the expected value of the response variable is a linear function of the
explanatory variable: µi ” E pyiq ” E pyi|xiq “ E pβ0 ` β1xi ` εi|xiq “ β0 ` β1xi.

• Constant variance. The variance of the errors is the same regardless of the value of
x: Var pε|xiq “ σ2

ε . The constant error variance implies constant conditional variance
of y on given x: Var py|xiq “ E ppyi ´ µiq

2q “ E ppyi ´ β0 ´ β1xiq
2q “ E pε2i q “ σ2

ε .
(Question: why the last equal sign?)

• Normality. The errors are independent identically distributed with Normal distribution

with mean 0 and variance σ2
ε . Write as εi

iid
„ Np0, σ2

ε q. Equivalently, the conditional

distribution of the response variable is normal: yi
iid
„ Npβ0 ` β1xi, σ

2
ε q.
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• Independence. The observations are sampled independently.

• Fixed X, or X measured without error and independent of the error.

– For experimental research where X values are under direct control of the re-
searcher (i.e. X’s are fixed). If the experiment were replicated, then the values of
X would remain the same.

– For research where X values are sampled, we assume the explanatory variable is
measured without error and the explanatory variable and the error are indepen-
dent in the population from which the sample is drawn.

• X is not invariant. X’s can not be all the same.

Figure 7.2 shows the assumptions of linearity, constant variance, and normality in SLR
model.

Figure 7.2: The assumptions of linearity, constant variance, and normality in simple regres-
sion. The graph shows the conditional population distributions PrpY |xq of Y for several
values of the explanatory variable X, labeled as x1, x2, . . . , x5. The conditional means of Y
given x are denoted µ1, . . . , µ5.
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9 Lecture 9: Feb 14

Last time

• Simple correlation

• The statistical model of the SLR (JF chapter 6)

Today

• Properties of the Least-Squares estimator

• Inference of SLR model

Properties of the Least-Squares estimator

Under the strong assumptions of the simple regression model, the sample least squares
coefficients β̂ls have several desirable properties as estimators of the population regression
coefficients β0 and β1:

• The least-squares intercept and slope are linear estimators, in the sense that they are
linear functions of the observations yi.
Proof:
method (a) β̂ “ pXTXq´1XTY

method (b) β̂1 “
ř

pxi´x̄qpyi´ȳq
ř

pxi´x̄q2
“

ř

pxi´x̄qyi
ř

pxi´x̄q2
´

ř

pxi´x̄qȳ
ř

pxi´x̄q2
“

ř pxi´x̄q
ř

pxi´x̄q2
yi “

ř

kiyi where

ki “
pxi´x̄q

ř

pxi´x̄q2

and β̂0 “ ȳ ´ β̂1x̄

• The sample least-squares coefficients are unbiased estimators of the population regres-
sion coefficients:

E
´

β̂0

¯

“ β0

E
´

β̂1

¯

“ β1

Proof:

method (a) E
´

β̂
¯

“ E
`

pXTXq´1XTY
˘

“ E
`

pXTXq´1XTXβ
˘

“ β. (note: E pY q “

E pXβ ` εq “ E pXβq ` E pεq “ Xβ)

method (b) recall that β̂1 “
ř

kiyi where ki “
pxi´x̄q

ř

pxi´x̄q2
. First, we want to show

1.
ř

ki “ 0

2.
ř

kixi “ 1

They are actually quite easy:
ř

ki “
ř

i
pxi´x̄q

ř

jpxj´x̄q
2 “

p
ř

i xiq´nx̄
ř

jpxj´x̄q
2 “ 0, and

ř

kixi “
ř

i
pxi´x̄qxi
ř

jpxj´x̄q
2 “

p
ř

i x
2
i q´x̄p

ř

i xiq
ř

jpxj´x̄q
2 “

p
ř

i x
2
i q´nx̄

2
ř

jpxj´x̄q
2 “ 1.

Now E
´

β̂1

¯

“ E p
ř

kiyiq “
ř

rkiE pyiqs “
ř

rkipβ0 ` β1xiqs “ β0

ř

ki ` β1

ř

pkixiq “
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β1, and E
´

β̂0

¯

“ E
´

ȳ ´ β̂1x̄
¯

“ E pȳq ´ x̄E
´

β̂1

¯

“ E
`

1
n

ř

yi
˘

´ x̄β1 “
1
n
r
ř

E pyiqs ´

x̄β1 “
1
n

ř

rβ0 ` xiβ1s ´ x̄β1 “ β0

• Both β̂0 and β̂1 have simple sampling variances:

Varpβ̂0q “
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2

Varpβ̂1q “
σ2
ε

ř

pxi ´ x̄q2

Proof:

Varpβ̂1q “ Varp
ř

kiyiq “
ř

k2
i Varpyiq “ σ2

ε

ř

k2
i “ σ2

ε

ř

ipxi´x̄q2

r
ř

jpxj´x̄q2s2
“

σ2
ε

ř

pxi´x̄q2
, and

Varpβ̂0q “ Varpȳ ´ β̂1x̄q “ Varpȳq ` px̄q2Varpβ̂1q ´ 2x̄CovpȲ, β̂1q.
Now,

Varpȳq “ Var

˜

1

n

n
ÿ

i“1

yi

¸

“
1

n2

n
ÿ

i“1

Varpyiq “
σ2

n
,

Varpβ̂1q “
σ2
ε

ř

pxi ´ x̄q2
,

and

CovpȲ , β̂1q “ Cov

#

1

n

n
ÿ

i“1

Yi,

řn
j“1pxj ´ x̄qYj

řn
i“1pxi ´ x̄q

2

+

“
1

n

1
řn
i“1pxi ´ x̄q

2
Cov

#

n
ÿ

i“1

Yi,
n
ÿ

j“1

pxj ´ x̄qYj

+

“
1

n
řn
i“1pxi ´ x̄q

2

n
ÿ

i“1

pxj ´ x̄q
n
ÿ

j“1

CovpYi, Yjq

“
1

n
řn
i“1pxi ´ x̄q

2

n
ÿ

i“1

pxj ´ x̄qσ
2

“ 0.

Finally,

Varpβ̂0q “
σ2

n
`

σ2x̄2

řn
i“1pxi ´ x̄q

2

“
σ2

n
řn
i“1pxi ´ x̄q

2

#

n
ÿ

i“1

pxi ´ x̄q
2
` nx̄2

+

“
σ2

řn
i“1 x

2
i

n
řn
i“1pxi ´ x̄q

2
.

• Rewrite the formula for Varpβ̂1q “
σ2
ε

pn´1qS2
X

, we see that the sampling variance of the

slope estimate will be small when

35



– The error variance σ2
ε is small

– The sample size n is large

– The explanatory-variable values are spread out (i.e. have a large variance, S2
X)

• (Gauss-Markov theorem) Under the assumptions of linearity, constant variance, and
independence, the least-squares estimators are BLUE (Best Linear Unbiased Estima-
tor), that is they have the smallest sampling variance and are unbiased. (show this)
Proof:
Let rβ1 be another linear unbiased estimator such that rβ1 “

ř

ciyi. For rβ1 is still

unbiased as above, E
´

rβ1

¯

“ β0

ř

ci ` β1

ř

cixi “ β1 for all β1, we have
ř

ci “ 0 and
ř

cixi “ 1.

Var
´

rβ1

¯

“ σ2
ε

ř

c2
i

Let ci “ ki ` di, then

Var
´

rβ1

¯

“σ2
ε

ÿ

pki ` diq
2

“σ2
ε

”

ÿ

ki
2
`
ÿ

di
2
` 2

ÿ

kidi

ı

“Var
´

β̂1

¯

` σ2
ε

ÿ

d2
i ` 2σ2

ε

ÿ

kidi

Now we show the last term is 0 to finish the proof.

ÿ

kidi “
ÿ

kipci ´ kiq “
ÿ

ciki ´
ÿ

k2
i

“
ÿ

i

«

ci
xi ´ x̄

ř

jpxj ´ x̄q
2

ff

´
1

ř

ipxi ´ x̄q
2

“ 0

• Under the full suite of assumptions, the least-squares coefficients β̂0 and β̂1 are the
maximum-likelihood estimators of β0 and β1. (show this)
Proof:
The log likelihood under the full suite of assumptions is ` “ ´ log

“

p2πq
n
2 σnε

‰

´ 1
2σ2
ε
pY´

XβqT pY´Xβq. Maximizing the likelihood is equivalent as minimizing pY´XβqT pY´
Xβq “ εT ε which is the SSE.

• Under the assumption of normality, the least-squares coefficients are themselves nor-
mally distributed. Summing up,

β̂0 „Npβ0,
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2
q

β̂1 „Npβ1,
σ2
ε

ř

pxi ´ x̄q2
q

36



Statistical inference of the SLR model

Now we have the distribution of β̂0 and β̂1

β̂0 „Npβ0,
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2
q

β̂1 „Npβ1,
σ2
ε

ř

pxi ´ x̄q2
q.

However, σε is never known in practice. Instead, an unbiased estimator of σ2
ε is given by

σ̂ε
2
“MSrEs “

SSrEs

n´ 2
.

Proof:

MSrEs “

ř

pyi ´ ŷiq
2

n´ 2
,

we want to show E p
ř

pyi ´ ŷiq
2q “ σ2

ε pn´ 2q.
LHS: E p

ř

pyi ´ ŷiq
2q “

ř

i

“

E pyi ´ ŷiq
2
‰

and Erpyi´ ŷiq
2s “ Varpyi´ ŷiq`rE pyi ´ ŷiqs

2 “ Varpyi´ ŷiq “ Varpyiq`Varpŷiq´2covpyi, ŷiq

Varpyiq “ σ2
ε

Varpŷiq “ Varpȳ ` β̂1pxi ´ x̄qq

“ Varpȳq ` pxi ´ x̄q2Varpβ̂1q ` 2pxi ´ x̄qCovpȳ, β̂1q

Covpȳ, β̂1q “ Covpȳ,
ÿ

kiyiq

“
ÿ

i

Covpȳ, kiyiq

“
ÿ

i

ki
n

Varpyiq

“
1

n

ÿ

ki

“ 0

6 Varpŷiq “ Varpȳq ` pxi ´ x̄q2Varpβ̂1q

“
1

n
σ2
ε `

σ2
ε pxi ´ x̄q

2

ř

pxi ´ x̄q2

“ σ2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2
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Now, we derive the last term covpyi, ŷiq:

covpyi, ŷiq “ covpyi, ȳ ` β̂1pxi ´ x̄qq

“ covpyi,
1

n

ÿ

j

yj ` pxi ´ x̄q
ÿ

j

kjyjq

“ covpyi,
ÿ

j

„

1

n
` pxi ´ x̄qkj



yjq

“ σ2
ε

„

1

n
` pxi ´ x̄qki



“ σ2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



Therefore, we have for ith residue

Varpyi ´ ŷiq “ Varpyiq ` Varpŷiq ´ 2covpyi, ŷiq

“ σ2
ε ` σ

2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



´ 2σ2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



“ σ2
ε

„

1´
1

n
´

pxi ´ x̄q
2

ř

pxi ´ x̄q2



.

And finally, sum over i we get

ÿ

i

Varpyi ´ ŷiq “ σ2
ε

ÿ

i

„

1´
1

n
´

pxi ´ x̄q2
ř

pxi ´ x̄q2



“ pn´ 2qσ2
ε

Confidence intervals

Now we substitute σ̂2
ε into the distribution of β̂0 and β̂1

β̂1 „Npβ1,
σ2
ε

ř

pxi ´ x̄q2
q

β̂0 „Npβ0,
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2
q

to get the estimated standard errors:

SE
Ź

pβ̂1q “

d

MSrEs
ř

pxi ´ x̄q2

SE
Ź

pβ̂0q “

d

MSrEs

ˆ

1

n
`

x̄2

ř

pxi ´ x̄q2

˙

And the 100p1´ αq% confidence intervals for β1 and β0 are given by

β̂1 ˘ tpn´ 2, α{2q

d

MSrEs

Sxx
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β̂0 ˘ tpn´ 2, α{2q

d

MSrEs

ˆ

1

n
`

x̄2

Sxx

˙

where Sxx “
ř

pxi ´ x̄q
2

Confidence interval for E pY |X “ x0q

The conditional mean E pY |X “ x0q can be estimated by evaluating the regression function
µpx0q at the estimates β̂0, β̂1. The conditional variance of the expression isn’t too difficult
(already shown):

Varpβ̂0 ` β̂1x0|X “ x0q “ σ2
p
1

n
`
px0 ´ x̄q2

Sxx

q

This leads to a confidence interval of the form

β̂0 ` β̂1x0 ˘ tpn´ 2, α{2q

d

MSrEs

ˆ

1

n
`
px0 ´ x̄q2

Sxx

˙

Prediction interval

Often, prediction of the response variable Y for a given value, say x0, of the independent
variable of interest. In order to make statements about future values of Y , we need to take
into account

• the sampling distribution of β̂0 and β̂1

• the randomness of a future value Y .

We have seen the predicted value of Y based on the linear regression is given by Ŷ0 “

β̂0 ` β̂1x0.

The 95% prediction interval has the form

Ŷ0 ˘ tpn´ 2, α{2q

d

MSrEs

ˆ

1`
1

n
`
px0 ´ x̄q2

Sxx

˙

.

Hypothesis test

To test the hypothesis H0 : β1 “ βslope0 that the population slope is equal to a specific value

βslope0 (most commonly, the null hypothesis has βslope0 “ 0), we calculate the test statistic
(T -statistics) with df “ n´ 2

t0 “
β̂1 ´ βslope0

SE
Ź

pβ̂1q
„ tn´2
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10 Lecture 10: Feb 16

Last time

• Properties of the Least-Squares estimator

Today

• HW1 due Feb 18

• Inference of SLR model

• Multiple linear regression

Properties of the Least-Squares estimator

• Under the assumption of normality, the least-squares coefficients are themselves nor-
mally distributed. Summing up,

β̂0 „Npβ0,
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2
q

β̂1 „Npβ1,
σ2
ε

ř

pxi ´ x̄q2
q

Statistical inference of the SLR model

Now we have the distribution of β̂0 and β̂1

β̂0 „Npβ0,
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2
q

β̂1 „Npβ1,
σ2
ε

ř

pxi ´ x̄q2
q.

However, σε is never known in practice. Instead, an unbiased estimator of σ2
ε is given by

σ̂ε
2
“MSrEs “

SSrEs

n´ 2
.

show that E p
ř

pyi ´ ŷiq
2q “ σ2

ε pn´ 2q.
Proof:

MSrEs “

ř

pyi ´ ŷiq
2

n´ 2
,

we want to show E p
ř

pyi ´ ŷiq
2q “ σ2

ε pn´ 2q.
LHS: E p

ř

pyi ´ ŷiq
2q “

ř

i

“

E pyi ´ ŷiq
2
‰
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and Erpyi´ ŷiq
2s “ Varpyi´ ŷiq`rE pyi ´ ŷiqs

2 “ Varpyi´ ŷiq “ Varpyiq`Varpŷiq´2covpyi, ŷiq

Varpyiq “ σ2
ε

Varpŷiq “ Varpȳ ` β̂1pxi ´ x̄qq

“ Varpȳq ` pxi ´ x̄q2Varpβ̂1q ` 2pxi ´ x̄qCovpȳ, β̂1q

Covpȳ, β̂1q “ Covpȳ,
ÿ

kiyiq

“
ÿ

i

Covpȳ, kiyiq

“
ÿ

i

ki
n

Varpyiq

“
1

n

ÿ

ki

“ 0

6 Varpŷiq “ Varpȳq ` pxi ´ x̄q2Varpβ̂1q

“
1

n
σ2
ε `

σ2
ε pxi ´ x̄q

2

ř

pxi ´ x̄q2

“ σ2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



Now, we derive the last term covpyi, ŷiq:

covpyi, ŷiq “ covpyi, ȳ ` β̂1pxi ´ x̄qq

“ covpyi,
1

n

ÿ

j

yj ` pxi ´ x̄q
ÿ

j

kjyjq

“ covpyi,
ÿ

j

„

1

n
` pxi ´ x̄qkj



yjq

“ σ2
ε

„

1

n
` pxi ´ x̄qki



“ σ2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



Therefore, we have for ith residue

Varpyi ´ ŷiq “ Varpyiq ` Varpŷiq ´ 2covpyi, ŷiq

“ σ2
ε ` σ

2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



´ 2σ2
ε

„

1

n
`

pxi ´ x̄q
2

ř

pxi ´ x̄q2



“ σ2
ε

„

1´
1

n
´

pxi ´ x̄q
2

ř

pxi ´ x̄q2



.

And finally, sum over i we get

ÿ

i

Varpyi ´ ŷiq “ σ2
ε

ÿ

i

„

1´
1

n
´

pxi ´ x̄q2
ř

pxi ´ x̄q2



“ pn´ 2qσ2
ε
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Confidence intervals

Now we substitute σ̂2
ε into the distribution of β̂0 and β̂1

β̂1 „Npβ1,
σ2
ε

ř

pxi ´ x̄q2
q

β̂0 „Npβ0,
σ2
ε

ř

x2
i

n
ř

pxi ´ x̄q2
q

to get the estimated standard errors:

SE
Ź

pβ̂1q “

d

MSrEs
ř

pxi ´ x̄q2

SE
Ź

pβ̂0q “

d

MSrEs

ˆ

1

n
`

x̄2

ř

pxi ´ x̄q2

˙

And the 100p1´ αq% confidence intervals for β1 and β0 are given by

β̂1 ˘ tpn´ 2, α{2q

d

MSrEs

Sxx

β̂0 ˘ tpn´ 2, α{2q

d

MSrEs

ˆ

1

n
`

x̄2

Sxx

˙

where Sxx “
ř

pxi ´ x̄q
2

Confidence interval for E pY |X “ x0q

The conditional mean E pY |X “ x0q can be estimated by evaluating the regression function
µpx0q at the estimates β̂0, β̂1. The conditional variance of the expression isn’t too difficult
(already shown):

Varpβ̂0 ` β̂1x0|X “ x0q “ σ2
p
1

n
`
px0 ´ x̄q2

Sxx

q

This leads to a confidence interval of the form

β̂0 ` β̂1x0 ˘ tpn´ 2, α{2q

d

MSrEs

ˆ

1

n
`
px0 ´ x̄q2

Sxx

˙

Prediction interval

Often, prediction of the response variable Y for a given value, say x0, of the independent
variable of interest. In order to make statements about future values of Y , we need to take
into account

• the sampling distribution of β̂0 and β̂1
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• the randomness of a future value Y .

We have seen the predicted value of Y based on the linear regression is given by Ŷ0 “

β̂0 ` β̂1x0.

The 95% prediction interval has the form

Ŷ0 ˘ tpn´ 2, α{2q

d

MSrEs

ˆ

1`
1

n
`
px0 ´ x̄q2

Sxx

˙

.

Hypothesis test

To test the hypothesis H0 : β1 “ βslope0 that the population slope is equal to a specific value

βslope0 (most commonly, the null hypothesis has βslope0 “ 0), we calculate the test statistic
(T -statistics) with df “ n´ 2

t0 “
β̂1 ´ βslope0

SE
Ź

pβ̂1q
„ tn´2

Some questions to answer using regression analysis:

1. What is the meaning, in words, of β1?
Answer: β1 is the population slope parameter of the SLR model that represents the
amount of increase in the mean of the response variable with a unit increase of the
explanatory variable.

2. True/False: (a) β1 is a statistic (b) β1 is a parameter (c) β1 is unknown.
Answer: (a) False (b) True (C) True. In reality, the true population parameters are
almost never known. However, in simulation studies, we do know them.

3. True/False: (a) β̂1 is a statistic (b) β̂1 is a parameter (c)β̂1 is unknown
Answer: (a) True (b) False (C) False. β̂1 is an estimate of the population parameter
β1.

4. Is β̂1 “ β1 ?

Answer: No. However, E
´

β̂1

¯

“ β1
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12 Lecture 12: Feb 21

Last time

• Inference of SLR model

Today

• remember to send me the link to HW1 tag

• Lab 2 review

• Multiple linear regression

Some questions to answer using regression analysis:

1. What is the meaning, in words, of β1?
Answer: β1 is the population slope parameter of the SLR model that represents the
amount of increase in the mean of the response variable with a unit increase of the
explanatory variable.

2. True/False: (a) β1 is a statistic (b) β1 is a parameter (c) β1 is unknown.
Answer: (a) False (b) True (C) True. In reality, the true population parameters are
almost never known. However, in simulation studies, we do know them.

3. True/False: (a) β̂1 is a statistic (b) β̂1 is a parameter (c)β̂1 is unknown
Answer: (a) True (b) False (C) False. β̂1 is an estimate of the population parameter
β1.

4. Is β̂1 “ β1 ?

Answer: No. However, E
´

β̂1

¯

“ β1

Multiple linear regression

JF 5.2+6.2

Multiple linear regression - an example

An example on the prestige, education, and income levels of 45 U.S. occupations (Duncan’s
data):
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income education prestige
accountant 62 86 82

pilot 72 76 83
architect 75 92 90
author 55 90 76
chemist 64 86 90
minister 21 84 87
professor 64 93 93
dentist 80 100 90
reporter 67 87 52
engineer 72 86 88
lawyer 76 98 89
teacher 48 91 73

“prestige” represents the percentage of respondents in a survey who rated an occupation as
“good” or “excellent” in prestige, “education” represents the percentage of incumbents in the
occupation in the 1950 U.S. Census who were high school graduates, and “income” represents
the percentage of occupational incumbents who earned incomes in excess of $3,500.

Using the pairs command in R, we can look at the pairwise scatter plot between the three
variables as in Figure 12.1.

income

20
40

60
80

10
0

20 40 60 80

20 40 60 80 100

education

20
40

60
80

0 20 40 60 80 100

0
20

40
60

80
10

0

prestige

Figure 12.1: Scatterplot matrix for occupational prestige, level of education, and level of
income of 45 U.S. occupations in 1950.
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Consider a regression model for the “prestige” of occupation i, Yi, in which the mean of Yi is
a linear function of two predictor variables Xi1 “ income,Xi2 “ education for occupations
i “ 1, 2, . . . , 45:

Y “ β0 ` β1income` β2education` error

or
Yi “ β0 ` β1Xi1 ` β2Xi2 ` εi

or
Y1 “ β0 ` β1X11 ` β2X12 ` ε1

Y2 “ β0 ` β1X21 ` β2X22 ` ε2
... “

...

Y45 “ β0 ` β1X45,1 ` β2X45,2 ` ε45

A multiple linear regression (MLR) model w/ p independent variables

Let p independent variables be denoted by x1, . . . , xp.

• Observed values of p independent variables for ith subject from sample denoted by
xi1, . . . , xip

• response variable for ith subject denoted by Yi

• For i “ 1, . . . , n, MLR model for Yi:

Yi “ β0 ` β1xi1 ` β2xi2 ` ¨ ¨ ¨ ` βpxip ` εi

• As in SLR, ε1, . . . , εn
iid
„ Np0, σ2q

Least squares estimates of regression parameters minimize SSrEs:

SSrEs “
n
ÿ

i“1

pyi ´ β0 ´ β1xi1 ´ ¨ ¨ ¨ ´ βpxipq
2

σ̂2 “
SSrEs
n´p´1

Interpretations of regression parameters:

• σ2 is unknown error variance parameter

• β0, β1, . . . , βp are p` 1 unknown regression parameters:

– β0: average response when x1 “ x2 “ ¨ ¨ ¨ “ xp “ 0

– βi is called a partial slope for xi. Represents mean change in y per unit increase
in xi with all other independent variables held fixed.
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13 Lecture 13: Feb 23

Last time

• Lab 2 review

• Multiple linear regression

Today

• HW1 review next week

• HW2 posted, due March 4th

• Inference of MLR

• more review on probability

Matrix formulation of MLR

Let a vector for p observed independent variables for individual i be defined by

xi¨ “ p1, xi1, xi2, . . . , xipq.

The MLR model for Y1, . . . , Yn is given by

Y1 “ β0 ` β1X11 ` β2X12 ` ¨ ¨ ¨ ` βpX1p ` ε1

Y2 “ β0 ` β1X21 ` β2X22 ` ¨ ¨ ¨ ` βpX2p ` ε2
... “

...

Yn “ β0 ` β1Xn1 ` β2Xn2 ` ¨ ¨ ¨ ` βpXnp ` εn

This system of n equations can be expressed using matrices:

Y “ Xβ ` ε

where

• Y denotes a response vector of size nˆ 1

• X denotes a design matrix of size nˆ pp` 1q

• β denotes a vector of regression parameters of size pp` 1q ˆ 1

• ε denotes an error vector of size nˆ 1

Here, the error vector ε is assumed to follow a multivariate normal distribution with variance-
covariance matrix σ2In. For individual i,

yi “ xi¨β ` εi.

47



Some simplified expressions: (a is a known pˆ 1 vector)

β̂ “ pXTXq´1XTY

Var
´

β̂
¯

“ σ2
pXTXq´1

“ Σ

Var
Ź

pβ̂q “MSrEspXTXq´1

“ Σ
Ź

Var
Ź

paT β̂q “ aTΣ
Ź

a

Question: what are the dimensions of each of these quantities?

• pXTXq´1 may be verbalized as “ x transposed x inverse”

• Σ
Ź

is the estimated variance-covariance matrix for the estimate of the regression pa-
rameter vector β̂

• X is assumed to be of full rank.

Some more simplified expressions:

Ŷ “ Xβ̂

“ XpXTXq´1XTY

“ HY

ε̂ “ Y ´ Ŷ

“ Y ´Xβ̂

“ pI´HqY

• Ŷ is called the vector of fitted or predicted values

• H “ XpXTXq´1XT is called the hat matrix

• ε̂ is the vector of residuals

For the Duncan’s data example on income, education and prestige, with p “ 2 independent
variables and n “ 45 observations,

X “

»

—

—

—

–

1 62 86
1 72 76
...

...
...

1 8 32

fi

ffi

ffi

ffi

fl

48



and

XTX “

»

–

45 1884 2365
1884 105148 122197
2365 122197 163265

fi

fl

pXTXq´1
“

»

–

0.10211 -0.00085 -0.00084
-0.00085 0.00008 -0.00005
-0.00084 -0.00005 0.00005

fi

fl

pXTXq´1XTY “

»

–

-6.0646629
0.5987328
0.5458339

fi

fl “?

SSrEs “ εTε “ pY ´ ŶqT pY ´ Ŷq “ 7506.7

MSrEs “
SSrEs

df
“

7506.7

45´ 2´ 1
“ 178.73

Σ
Ź

“MSrEspXTXq´1
“

»

–

18.249481 -0.151845008 -0.150706025
-0.151845 0.014320275 -0.008518551
-0.150706 -0.008518551 0.009653582

fi

fl

Multiple correlation, JF 5.2.3

The sums of squares in multiple regression are defined in the same manner as in SLR:

TSS “
ÿ

pYi ´ Ȳ q
2

RegSS “
ÿ

pŶi ´ Ȳ q
2

RSS “
ÿ

pYi ´ Ŷiq
2
“
ÿ

ε̂2i

Not surprisingly, we have a similar analysis of variance for the regression:

TSS “ RegSS `RSS

The squared multiple correlation R2, representing the proportion of variation in the response
variable captured by the regression, is defined in terms of the sums of squares:

R2
“
RegSS

TSS
“ 1´

RSS

TSS
.

Because there are several slope coefficients, potentially with different signs, the multiple
correlation coefficient is, by convention, the positive square root of R2. The multiple correla-
tion is also interpretable as the simple correlation between the fitted and observed Y values,
i.e. rŶ Y .
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Adjusted-R2

Because the multiple correlation can only rise, never decline, when explanatory variables are
added to the regression equation (HW1), investigators sometimes penalize the value of R2

by a “correction” for degrees of freedom. The corrected (or “adjusted”) R2 is defined as:

R2
adj “1´

RSS
n´p´1

TSS
n´1

“1´

„

p1´R2qpn´ 1q

n´ p´ 1



Confidence intervals

Confidence intervals and hypothesis tests for individual coefficients closely follow the pattern
of simple-regression analysis:

1. substitute an estimate of the error variance (MSE) for the unknown σ2 into the variance
term of β̂i

2. find the estimated standard error of a slope coefficient SE
Ź

pβ̂iq

3. t “ β̂i´βi

SE
Ź

pβ̂iq
follows a t-distribution with degrees of freedom as associated with SSE.

Therefore, we can construct the 100p1´αq% confidence interval for a single slope parameter
by (why?):

β̂i ˘ tpn´ p´ 1, α{2qSE
Ź

pβ̂iq

Hand-waving proof:

we know that t “ β̂i´βi

SE
Ź

pβ̂iq
„ tn´p´1, such that

1´ α “Pr p´tc ă t ă tcq

“Pr

˜

tc ă
β̂i ´ βi

SE
Ź

pβ̂iq
ă tc

¸

“Pr
´

β̂i ´ tc ¨ SE
Ź

pβ̂iq ă βi ă β̂i ` tc ¨ SE
Ź

pβ̂iq
¯

where tc “ tpn´ p´ 1, α{2q is the critical value.

Hypothesis tests

We first test the null hypothesis that all population regression slopes are 0:

H0 : β1 “ β2 “ ¨ ¨ ¨ “ βp “ 0

The test statistics,

F “
RegSS{p

RSS{pn´ p´ 1q
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follows an F -distribution with p and n´ p´ 1 degrees of freedom.

We can also test a null hypothesis about a subset of the regression slopes, e.g.,

H0 : β1 “ β2 “ ¨ ¨ ¨ “ βq “ 0.

Or more generally, test the null hypothesis

H0 : βq1 “ βq2 “ ¨ ¨ ¨ “ βqk “ 0

where 0 ď q1 ă q2 ă ¨ ¨ ¨ ă qk ď p is a subset of k indices. To get the F-statistic for this case,
we generally perform the following steps:

1. Fit the full (“unconstrained”) model, in other words, model that provides context for
H0. Record SSRfull and the associated dffull

2. Fit the reduced (“constrained”) model, in other words, full model constrained by H0.
Record SSRred and the associated dfred

3. Calculate the F-statistic by

F “
rSSRred ´ SSRfulls{pdfred ´ dffullq

SSRfull{dffull

4. Find p-value (the probability of observing an F-statistic that is at least as high as the
value that we obtained) by consulting an F-distribution with numerator dfpndfq “
dfred ´ dffull and denominator dfpddfq “ dffull. Notation: Fndf,ddf , see Figure 13.1.

Figure 13.1: An example for p-value for F-statistic value 2.57 with an F3,246 distribution
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15 Lecture 15: March 2

Last time

• Inference of MLR

Today

• HW2 posted, due March 11th

• HW1 review

• more review on probability

• Dummy-Variable regression

• Interactions

A little more background review

Reference:

• Statistical Inference, 2nd Edition, by George Casella & Roger L. Berger

• Review of Probability Theory by Arian Maleki and Tom Do

Chi-square, t-, and F-Distributions

Let Z1, Z2, . . . , Zk
iid
„ Np0, 1q, then X ” Z2

1 `Z
2
2 `¨ ¨ ¨`Z

2
k „ χ2

k (with k degrees of freedom).
If X „ χ2

k

E pXq “ k

Var pXq “ 2k.

Student’s t versus χ2

If X1, . . . , Xn
iid
„ Npµ, σ2q, then

X̄ ´ µ

σ{
?
n
„ Np0, 1q.

When σ is unknown,

X̄ ´ µ

σ̂{
?
n
„ tn´1, where σ̂ “

d

ř

pXi ´ X̄q2

n´ 1
.
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Note that
X̄ ´ µ

σ̂{
?
n
“
X̄ ´ µ

σ{
?
n
¨

1
σ̂
σ

“ Z ¨
1

b

ř

pXi´X̄q2

pn´1qσ2

“
Z

b

χ2
n´1

n´1

F versus χ2

Fndf,ddf ”
χ2
ndf{ndf

χ2
ddf{ddf

t versus F

tk “
Z

a

χ2
k{k

“

a

χ2
1{1

a

χ2
k{k

“
a

F1,k

or, in other words, t2k “ F1,k

Random vectors and matrices

The cdf for random vector

Y “

»

—

—

—

–

Y1

Y2
...
Yn

fi

ffi

ffi

ffi

fl

is FYpyq “ PrpY1 ď y1, Y2 ď y2, . . . , Yn ď ynq

If a joint pdf exists, then fYpyq “ fYpy1, . . . , ynq and

FYpyq “

y1
ż

´8

y2
ż

´8

. . .

yn
ż

´8

fYptqdt
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Moments

E pYq “ µY “

»

—

—

—

–

EpY1q

EpY2q
...

EpYnq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

µ1

µ2
...
µn

fi

ffi

ffi

ffi

fl

Var pYq “ E
`

pY ´ µYqpY ´ µYq
T
˘

“ E

¨

˝

»

–

pY1 ´ µ1q
2 pY1 ´ µ1qpY2 ´ µ2q . . .

pY2 ´ µ2qpY1 ´ µ1q pY2 ´ µ2q
2 . . .

. . .

fi

fl

˛

‚

“ E prpYi ´ µiqpYj ´ µjq, i “ 1, 2, . . . , n, j “ 1, 2, . . . , nsq

“ pσijqi“1,2,...,n;j“1,2,...,n

where σij “ CovpYi, Yjq

Linear functions

Let X P Rkˆ1,Y P Rnˆ1 and A P Rkˆ1, B P Rkˆn be non-random, then

X
kˆ1

“ A
kˆ1
` B

kˆn
Y
nˆ1

E pXq “ A`BE pYq

Var pXq “ BVar pYqBT

Sums of random vectors

X
nˆ1

“ Y
nˆ1
` Z

nˆ1

E pXq “ E pYq ` E pZq “ E pY ` Zq

Note that there is no independence assumed above.

Var pXq “ Var pY ` Zq “ Var pYq `Var pZq ` CovpY,Zq ` CovpZ,Yq

If Y,Z are uncorrelated, then Var pXq “ Var pYq `Var pZq
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17 Lecture 17: March 7

Last time

• HW1 review

• more review on probability

• Dummy-Variable regression

Today

• Interactions

• Mid-term exam starts

Dummy-variable regression

For categorical data (factor), we use dummy variable regression:

Yi “ β0 ` β1Xi ` β2Di ` εi

where D, called a dummy variable regressor or an indicator variable, is coded 1 for one level
and 0 for all others,

Di “

"

1 for men
0 for women

.

Therefore, for women, the model becomes

Yi “ β0 ` β1Xi ` εi

and for men
Yi “ β0 ` β1Xi ` β2 ` εi “ pβ0 ` β2q ` β1Xi ` εi

For example, Figure 17.1 (a) and (b) represents two small (idealized) populations. In both
cases, the within-gender regressions of income on education are parallel. Parallel regressions
imply additive effects of education and gender on income: Holding education constant, the
“effect” of gender is the vertical distance between the two regression lines, which, for parallel
lines, is everywhere the same.
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Figure 17.1: Idealized data representing the relationship between income and education for
populations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of education than
men. In both (a) and (b), the within-gender (i.e., partial) regressions (solid lines) are parallel.
In each graph, the overall (i.e. marginal) regression of income on education (ignoring gender)
is given by the broken line. JF Figure 7.1.

Multi-level factor

We can model the effects of classification factors with m categories (levels) by using m ´ 1
indicator variables.

For example, the three-category occupational-type factor can be represented in the regression
equation by introducing two dummy regressors:

Category D1 D2

Professional and managerial 1 0
White collar 0 1
Blue collar 0 0

A model for the regression of prestige on income, education, and type of occupation is then

Yi “ β0 ` β1Xi1 ` β2Xi2 ` γ1Di1 ` γ2Di2 ` εi

where X1 is income and X2 is education. This model describes three parallel regression
planes, which can differ in their intercepts:

Professional: Yi “ pβ0 ` γ1q ` β1Xi1 ` β2Xi2 ` εi
White collar: Yi “ pβ0 ` γ2q ` β1Xi1 ` β2Xi2 ` εi
Blue collar: Yi “ β0 ` β1Xi1 ` β2Xi2 ` εi

Therefore, the coeficient β0 gives the intercept for blue-collar occupations; γ1 represents the
constant vertical difference between the parallel regression planes for professional and blue-
collar occupations (fixing the values of education and income); and γ2 represents the constant
vertical distance between the regression planes for white-collar and blue-collar occupations
(again, fixing education and income).
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In the above prestige example, we chose “blue collar” as the baseline category. Sometimes,
it is natural to pick a particular category as the baseline category, for example, the “control
group” in an experiment. However, in most applications, the choice of a baseline category
is entirely arbitrary.

Matrix representation

For the above prestige model

Yi “ β0 ` β1Xi1 ` β2Xi2 ` γ1Di1 ` γ2Di2 ` εi

we have the design matrix X as

X “

»

—

—

—

–

1 X11 X12 D11 D12

1 X21 X22 D21 D22
...

...
...

...
...

1 Xn1 Xn2 Dn1 Dn2

fi

ffi

ffi

ffi

fl

and the vector of coefficients β is

β “

»

—

—

—

—

–

β0

β1

β2

γ1

γ2

fi

ffi

ffi

ffi

ffi

fl

such that we have (again) the linear model in matrix form:

Y “ Xβ ` ε

where εi
iid
„ Np0, σ2q, in other words, ε „ Np0, σ2Inq.

Interactions

Two explanatory variables are said to interact in determining a response variable when the
partial effect of one depends on the value of the other. Consider the hypothetical data shown
in Figure 17.2.
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Figure 17.2: Idealized data representing the relationship between income and education for
populations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of education than
men. In both (a) and (b), the within-gender (i.e., partial) regressions (solid lines) are not
parallel. The slope for men is greater than the slope for women, and consequently education
and gender interact in affecting income. In each graph, the overall regression of income on
education (ignoring gender) is given by the broken line. JF Figure 7.7.

It is apparent in both Figure 17.2 (a) and (b) the within-gender regressions of income on
education are not parallel: In both cases, the slope for men is larger than the slope for
women.

Modeling interactions

We accommodate the interaction of education and gender by:

Yi “ β0 ` β1Xi ` β2Di ` β3pXiDiq ` εi

where we introduce the interaction regressor XD into the regression equation. For women,
the model becomes

Yi “ β0 ` β1Xi ` β2 ¨ 0` β3pXi ¨ 0q ` εi

“ β0 ` β1Xi ` εi

and for men
Yi “ β0 ` β1Xi ` β2 ¨ 1` β3pXi ¨ 1q ` εi

“ pβ0 ` β2q ` pβ1 ` β3qXi ` εi

The parameters β0 and β1 are, respectively, the intercept and slope for the regression of
income on education among women (the baseline category for gender); β2 gives the difference
in intercepts between the male and female groups; and β3 gives the difference in slopes
between the two groups.

Usual guidance: Models that include an interaction between two predictors should also
include the individual predictors by themselves regardless of the statistical significance of
the associated β’s.
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Test for the interaction

We can simply test the hypothesis H0 : β3 “ 0 and construct the test statistic t “ β̂i´0

SE
Ź

pβ̂iq
„

tn´4 (p “ 3).

Interactions with multi-level factor

We can easily extend the method for modeling interactions by forming product regressors
to multi-level factors, to several factors, and to several quantitative explanatory variables.
Using the occupational prestige example, the occupational type could possibly interact both
with income (X1) and with education (X2):

Yi “ β0 ` β1Xi1 ` β2Xi2 ` γ1Di1 ` γ2Di2

` δ11Xi1Di1 ` δ12Xi1Di2 ` δ21Xi2Di1 ` δ22Xi2Di2 ` εi

The model therefore permits different intercepts and slopes for the three types of occupations:

Professional: Yi “ pβ0 ` γ1q` pβ1 ` δ11qXi1` pβ2 ` δ21qXi2` εi
White collar: Yi “ pβ0 ` γ2q` pβ1 ` δ12qXi1` pβ2 ` δ22qXi2` εi
Blue collar: Yi “ β0` β1Xi1` β2Xi2` εi
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18 Lecture 18: March 14

Last time

• Dummy-Variable regression (JF chapter 7)

• Interactions

Today

• Anonymous internal midterm evaluations on canvas

• Unusual and influential data (JF chapter 11)

Unusual and influential data

Linear models make strong assumptions about the structure of data, assumptions that often
do not hold in applications. The method of least squares can be very sensitive to the structure
of the data and may be markedly influenced by one or a few unusual observations.

Outliers

In simple regression analysis, an outlier is an observation whose response-variable value is
conditionally unusual given the value of the explanatory variable: see Figure 18.1.

Figure 18.1: The black point is a regression outlier because it combines a relatively large
value of Y with a relatively small value of X, even though neither its X-value nor its Y -value
is unusual individually. Because of the positive relationship between Y and X, points with
small X-values also tend to have small Y -values, and thus the black point is far from other
points with similar X-values. JF Figure 11.1.

Unusual data are problematic in linear models fit by least squares because they can unduly
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influence the results of the analysis. Their presence may be a signal that the model fails to
capture important characteristics of the data.

Figure 18.2 illustrates some distinctions for the simple-regression model Y “ β0 ` β1X ` ε.

Figure 18.2: Leverage and influence in simple regression. In each graph, the solid line
gives the least-squares regression for all the data, while the broken line gives the least-
squares regression with the unusual data point (the black circle) omitted. (a) An outlier
near the mean of X has low leverage and little influence on the regression coefficients.
(b) An outlier far from the mean of X has high leverage and substantial influence on the
regression coefficients. (c) A high-leverage observation in line with the rest of the data does
not influence the regression coefficients. In panel (c), the two regression lines are separated
slightly for visual effect but are, in fact, coincident JF Figure 11.2.

Some qualitative distinctions between outliers and high leverage observations:

• An outlier is a data point whose response Y does not follow the general trend of the
rest of the data.
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• A data point has high leverage if it has “extreme” predictor X values:

– With a single predictor, an extreme X value is simply one that is particularly
high or low.

– With multiple predictors, extreme X values may be particularly high or low for
one or more predictors, or may be “unusual” combinations of predictor values .

And the influence of a data point is the combination of leverage and discrepancy (“outlying-
ness”) though the following heuristic formula:

Influence on coefficients “ LeverageˆDiscrepancy.

Assessing leverage: hat-values

The hat-value hi is a common measure of leverage in regression. They are named because it
is possible to express the fitted values Ŷj (“Y-hat”) in terms of the observed values Yi:

Ŷj “ h1jY1 ` h2jY2 ` ¨ ¨ ¨ ` hjjYj ` ¨ ¨ ¨ ` hnjYn “
n
ÿ

i“1

hijYi.

The weight hij captures the contribution of observation Yi to the fitted value Ŷj: If hij is
large, then the ith observation can have a considerable impact on the jth fitted value. With
the least square solutions, for the fitted values:

Ŷ “ Xβ “ XpXTXq´1XTY

we (already) get the hat matrix:

H “ XpXTXq´1XT

Properties:

• (idempotent) H “ HH

• hi ” hii “
řn
j“1 h

2
ij

• 1
n
ď hi ď 1 (a proof by Mohammad Mohammadi)

• h̄ “ pp` 1q{n

In the case of SLR, the hat-values are:

hi “
1

n
`

pXi ´ X̄q
2

řn
j“1pXj ´ X̄q2

62

https://www.ine.pt/revstat/pdf/rs160104.pdf


Detecting outliers: studentized residuals

The variance of the residuals (ε̂i “ Yi´ Ŷi) do not have equal variances (even if the errors εi
have equal variances):

Varpε̂q “ VarpY ´Xβ̂q “ VarrpI´HqYs “ pI´HqVarpYqpI´Hq “ σ2
pI´Hq

so that for ε̂i,
Varpε̂iq “ σ2

p1´ hiq.

High-leverage observations tend to have small residuals (in other words, these observations
can pull the regression surface toward them).

The standardized residual (sometimes called internally studentized residual)

ε̂
1

i ”
ε̂

σ̂
?

1´ hi

, however, does not follow a t-distribution, because the numerator and denominator are not
independent.

Suppose, we refit the model deleting the ith observation, obtaining an estimate σ̂p´iq of σ
that is based on the remaining n´1 observations. Then the studentized residual (sometimes
called externally studentized residual )

ε̂˚i ”
ε̂

σ̂p´iq
?

1´ hi

has an independent numerator and denominator and follows a t-distribution with n´ p´ 2
degrees of freedom.

The studentized and the standardized residuals have the following relationship (Beckman
and Trussell, 1974):

ε̂˚i “ ε̂1i

d

n´ p´ 2

n´ p´ 1´ ε̂12i

For large n,

ε̂˚i « ε̂1i «
ε̂

σ̂

Test for outlier

It is of our interest to pick the studentized residual ε̂˚max with the largest absolute value
among ε̂˚1 , ε̂

˚
2 , . . . , ε̂

˚
n to test for outlier. However, by doing so, we are effectively picking the

biggest of n test statistics such that it is not legitimate simply to use tn´p´2 to find a p-value.
We need a correction on the p-value because of multiple-comparisons.

Suppose that we have p1 “ Prptn´p´2 ą |ε̂˚max|q, the p-value before correction. Then the
Bonferroni adjusted p-value is p “ np1.
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Measuring influence

Influence on the regression coefficients combines leverage and discrepancy. The most di-
rect measure of influence simply expresses the impact on each coefficient of deleting each
observation in turn:

Dij “ β̂j ´ β̃jp´iq for i “ 1, . . . , n and j “ 0, 1, . . . , p

where β̂j are the least-squares coefficients calculated for all the data, and the β̃jp´iq are the
least-squares coefficients calculated with the ith observation omitted. To assist in interpre-
tation, it is useful to scale the Dij by (deleted) coefficient standard errors:

D˚ij “
Dij

SE
Ź

p´iqpβ̃jp´iqq

Following Belsley, Kuh, and Welsh (1980), the Dij are often termed DFBETAij, and D˚ij are
called DFBETASij. One problem associated with using Dij or D˚ij is their large number:
npp` 1q of each.

Cook’s distance calculated as

Di “

řn
j“1pỹjp´iq ´ ŷjq

2

pp` 1qσ̂2
“

ε̂
12
i

p` 1
ˆ

hi
1´ hi

In effect, the first term in the formula for Cook’s D is a measure of discrepancy, and the
second is a measure of leverage. We look for values of Di that stand out from the rest.

A similar measure suggested by Belsley et al. (1980)

DFFITSi “ ε̂˚i
hi

1´ hi

Except for unusual data configurations, Cook’s Di « DFFITS2
i {pp` 1q.

Numerical cutoffs (suggested)

Diagnostic statistic Cutoff value

hi 2h̄ “ 2pp`1q
n

, (3h̄ for small sample)
D˚ij |D˚ij| ą 1 or 2 (2{

?
n for large samples)

Cook’s Di Di ą
4

n´p´1

DFFITS |DFFITSi| ą 2
b

p`1
n´p´1
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19 Lecture 19: March 16

Last time

• Unusual and influential data (JF chapter 11)

Today

• Added-variable plots

• Should unusual data be discarded

• Diagnosing non-normality, non-constant error variance, and nonlinearity (JF chapter
12)

Added-variable plots

Unlike the case of SLR, the scatterplot with the response variable and one predictor gives
only the marginal effect in MLR. Instead, the added-variable plot (also called a partial-
regression plot or a partial-regression leverage plot) gives a graphical inspection over each
dimension.

Let Ỹ
p1q
i represent the residuals from the least-squares regression of Y on all the Xs except

X1, in other words, the residuals from the following fitted regression equation:

Yi “ β̃
p1q
0 ` β̃

p1q
2 Xi2 ` ¨ ¨ ¨ ` β̃

p1q
p Xip ` Ỹ

p1q
i

where the parenthetical superscript p1q indicates the omission of X1 from the right-hand side

of the regression equation. Likewise, X̌
p1q
i is the residual from the least-squares regression of

X1 on all the other Xs:

Xi1 “ β̌
p1q
0 ` β̌

p1q
2 Xi2 ` ¨ ¨ ¨ ` β̌

p1q
p Xip ` X̌

p1q
i

Then, the residuals Ỹ
p1q
i and X̌

p1q
i have the following interesting properties:

1. The slope from the least-squares regression of Ỹ
p1q
i on X̌

p1q
i is simply the least-squares

slope β̂1 from the full multiple regression.

2. The residuals from the simple regression of Ỹ
p1q
i on X̌

p1q
i are the same as those from

the full regression, that is
Ỹ
p1q
i “ β̂1X̌

p1q
i ` ε̂i

3. The variation of X̌
p1q
i is the conditional variation of X1 holding the other Xs constant.

Figure 19.1 shows that the conditional variation is smaller than its marginal variation –
much smaller when X1 is strongly collinear with other Xs,
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Figure 19.1: The marginal scatterplot (open circles) for Y and X1 superimposed on the
added-variable plot (filled circles) for X1 in the regression of Y on X1 and X2. The variables
Y and X1 are centered at their means to facilitate the comparison of the two sets of points.
The arrows show how the points in the marginal scatterplot map into those in the AV plot. In
this contrived data set, X1 and X2 are highly correlated (r12 “ 0.98), and so the conditional
variation in X1 (represented by the horizontal spread of the filled points) is much less than
its marginal variation (represented by the horizontal spread of the open points). The broken
line gives the slope of the marginal regression of Y on X1 alone, while the solid line gives
the slope β̂1 of X1 in the MLR of Y on both Xs. JF Figure 11.9.

Figure 19.2 illustrates the added-variable plots using the Duncan’s data.
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Figure 19.2: Added-variable plots for Duncan’s regression of occupational prestige on the
(a) income and (b) education levels of 45 US occupations in 1950. Three unusal obser-
vations, miniters, conductors, and railroadengineers, are identified on the plots. The
added-variable plot for the intercept β̂0 is not shown. JF Figure 11.10.

The added-variable plot for income in Figure 19.2(a) reveals three observations that exert
substantial leverage on the income coefficient:

• minister, whose income is unusually low given the educational level of the occupation

• conductor, whose income is unusally high given education

• railroad engineer, whose income is relatively high given education.

Remember that the horizontal variable in this added-variable plot is the residual from the
regression of income on education, and thus values far from 0 in this direction are for occu-
pations with incomes that are unusually high or low given their levels of education.

Should unusual data be discarded?

In practice, although problematic data should not be ignored, they also should not be deleted
automatically and without reflection:

• It is important to investigate why an observation is unusual. Truly “bad” data (e.g.,
an error in data entry ) can often be corrected or, if correction is not possible, thrown
away. When a discrepant data point is correct, we may be able to understand why the
observation is unusual. For Duncan’s data, for example, it makes sense that ministers
enjoy prestige not accounted for by the income and educational levels of the occupation
and for a reason not shared by other occupations. In a case like this, where an outlying
observation has characteristics that render it unique, we may choose to set it aside from
the rest of the data.
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• Alternatively, outliers, high-leverage points, or influential data may motivate model
respecification, and the pattern of unusual data may suggest the introduction of ad-
ditional explanatory variables. We noticed, for example, that both conductors and
railroad engineers had high leverage in Duncan’s regression because these occupations
combined relatively high income with relatively low education. Perhaps this combi-
nation of characteristics is due to a high level of unionization of these occupations in
1950, when the data were collected. If so, and if we can ascertain the levels of unioniza-
tion of all of the occupations, we could enter this as an explanatory variable, perhaps
shedding further light on the process determining occupational prestige.

• Except in clear-cut cases, we are justifiably reluctant to delete observations or to re-
specify the model to accommodate unusual data. Some researchers reasonably adopt
alternative estimation strategies, such as robust regression, which continuously down-
weights outlying data rather than simply discarding them. Because these methods
assign zero or very small weight to highly discrepant data, however, the result is
generally not very different from careful application of least squares, and , indeed,
robust-regression weights can be used to identify outliers.

• Finally, in large samples, unusual data substantially alter the results only in extreme
instances. Identifying unusual observations in a large sample, therefore, should be
regarded more as an opportunity to learn something about the data not captured by
the model that we have fit, rather than as an occasion to reestimate the model with
the unusual observations removed.
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21 Lecture 21: March 21

Last time

• Added-variable plots

• Should unusual data be discarded

Today

• More response from midterm evaluations

• Diagnosing non-normality, non-constant error variance, and nonlinearity (JF chapter
12)

Studentized residual and its hypothesis test

Recall that the externally studentized residual

ε̂˚i ”
ε̂

σ̂p´iq
?

1´ hi

has an independent numerator and denominator and follows a t-distribution with n´ p´ 2
degrees of freedom.

It is of our interest to pick the studentized residual ε̂˚max with the largest absolute value
among ε̂˚1 , ε̂

˚
2 , . . . , ε̂

˚
n to test for outlier. However, by doing so, we are effectively picking the

biggest of n test statistics such that it is not legitimate simply to use tn´p´2 to find a p-value.
We need a correction on the p-value because of multiple-comparisons.

Suppose that we have p1 “ Prptn´p´2 ą |ε̂˚max|q, the p-value before correction. Then the
Bonferroni adjusted p-value is p “ np1.

What is the null hypothesis? Can you construct the exact p-value?

H0: there are no outliers v.s. Ha : there is at least one outlier
Not really. We can derive the pdf for ε̂˚max if ε̂˚1 , ε̂

˚
2 , . . . , ε̂

˚
n are independent.

Non-normally distributed errors

The assumption of normally distributed errors is almost always arbitrary. Nevertheless,
the central limit theorem ensures that, under very broad conditions, inference based on the
least-squares estimator is approximately valid in all but small samples. Why concern about
non-normal errors?

• For some types of error distributions, particularly those with heavy tails, the efficiency
of least-squares estimation decreases markedly.

• Highly skewed error distributions, aside from their propensity to generate outliers in
the direction of the skew, compromise the interpretation of the least-squares fit. This
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fit is a conditional mean (of Y given the Xs), and the mean is not a good measure of
the center of a highly skewed distribution.

• A multimodal error distribution suggests that omission of one or more discrete ex-
planatory variables that divide the data naturally into groups. An examination of the
distribution of the residuals may motivate respecification of the model.

Note: The skewness α3 is defined as α3 ”
µ3

pµ2q3{2
where µn denotes the nth central moment

of a random variable X. The skewness measures the lack of symmetry in the pdf.

Quantile-comparison plot, JF 3.1.3

Quantile-comparison plots are useful for comparing an empirical sample distribution with a
theoretical distribution, such as the normal distribution.

Let P pxq represent the theoretical cumulative distribution function (cdf) with which we want
to compare the data, that is P pxq “ PrpX ď xq. The quantile-comparison plot is constructed
by:

1. Order the data values from smallest to largest, Xp1q, Xp2q, . . . , Xpnq. The Xpiq are called
the order statistics of the sample.

2. By convention, the cumulative proportion of the data “below” Xpiq is given by

Pi “
i´ 1

2

n

3. Use the inverse of the cdf to find the value zi corresponding to the cumulative proba-
bility Pi, that is

zi “ P´1
p
i´ 1

2

n
q

4. Plot the zi as horizontal coordinates against the Xpiq as vertical coordinates. If X is
sampled from the distribution P , then Xpiq « zi.

• if the distributions are identical except for location, then the plot is approximately
linear with nonzero intercept, Xpiq « µ` zi

• if the distributions are identical except for scale, then the plot is approximately
linear with a slope different from 1, Xpiq « σzi

• if the distributions differ both in location and scale but have the same shape, then
Xpiq « µ` σzi

5. It is often helpful to place a comparison line on the plot to facilitate the perception
of departures from linearity. For a normal quantile-comparison plot (comparing the
distribution of the data with the standard normal distribution), we can alternatively
use the median as a robust estimator of µ and the interquartile range/1.39 as a robust
estimator of σ.
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6. We expect some departure from linearity because of sampling variation. It therefore
assists interpretation to display the expected degree of sampling error in the plot. The
standard error of the order statistic Xpiq is

SEpXpiqq “
σ̂

ppziq

c

Pip1´ Piq

n

where ppziq is the probability density function, pdf, corresponding to the CDF P pzq.
The values along the fitted line are given by X̂piq “ µ̂ ` σ̂zi. An approximate 95%
confidence “envelope” around the fitted line is, therefore,

X̂piq ˘ 2ˆ SEpXpiqq

• Figure 21.1 plots a sample of n “ 100 observations from a normal distribution with
mean µ “ 50 and standard deviation σ “ 10.

Figure 21.1: Normal quantile-comparison plot for a sample of 100 observations drawn from
a normal distribution with mean 50 and standard deviation 10. The fitted line is through
the quartiles of the distribution, the broken lines give a pointwise 95% confidence interval
around the fit. JF Figure 3.8.

The plotted points are reasonably linear and stay within the rough 95% confidence
envelope.
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• Figure 21.2 plots a sample of n “ 100 observations from the positively skewed chi-
square distribution with 2 degrees of freedom. The positive skew of the data is reflected
in points that lie above the comparison line in both tails of the distribution. (In
contrast, the tails of negatively skewed data would lie below the comparison line.)

Figure 21.2: Normal quantile-comparison plot for a sample of 100 observations drawn from
the positively skewed chi-square distribution with 2 degrees of freedom. JF Figure 3.9.

• Figure 21.3 plots a sample of n “ 100 observations from the heavy-tailed t distribution
with 2 degrees of freedom. In this case, values in the upper tail lie above the corre-
sponding normal quantiles, the values in the lower tail below the corresponding normal
quantiles.

72



Figure 21.3: Normal quantile-comparison plot for a sample of 100 observations drawn from
heavy-tailed t-distribution with 2 degrees of freedom. JF Figure 3.10.

• Figure 21.4 shows the normal quantile-comparison plot for the distribution of infant
mortality. The positive skew of the distribution is readily apparent.
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Figure 21.4: Normal quantile-comparison plot for the distribution of infant mortality. Note
the positive skew. JF Figure 3.11.

Nonconstant error variance

One of the assumptions of the regression model is that the variation of the response variable
around the regression surface (the error variance) is everywhere the same:

Varpεq “ VarpY|x1, . . . , xpq “ σ2
ε

Constant error variance is often termed homoscedasticity, and similarly, nonconstant er-
ror variance is termed heteroscedasticity. We detect nonconstant error variances through
graphical methods.

Residual plots

Because the least square residuals have unequal variance even when the constant variance
assumption is correct:

Varpε̂iq “ σ2
p1´ hiq.

It is preferable to plot studentized residuals against fitted values. A pattern of changing
spread is often more easily discerned in a plot of absolute studentized residuals, |ε̂˚i |, or
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squared studentized residuals, ε̂˚2
i , against Ŷ . If the values of Ŷ are all positive, then we can

plot log |ε̂˚i | against log Ŷ . Figure 21.5 shows a plot of studentized residuals against fitted
values and spread-level plot of studentized residuals, several points with negative fitted values
were omitted.

Figure 21.5: (a) Plot of studentized residuals versus fitted values and (b) spread-level plot
for studentized residuals. JF Figure 12.3.

It is apparent from both graphs that the residual spread tends to increase with the level of
the response, suggesting a violation of constant error variance assumption.

Weighted-least-squares estimation

Weighted-least-squares (WLS) regression provides an alternative approach to estimation in
the presence of nonconstant error variance. Suppose that the errors from the linear regression
model Y “ Xβ` ε are independent and normally distributed, with zero means but different
variances: εi „ Np0, σ2

i q. Suppose further that the variances of the errors are known up to
a constant of proportionality σ2

ε , so that σ2
i “ σ2

ε {w
2
i . Then the likelihood for the model is

Lpβ, σ2
ε q “

1

p2πqn{2|Σ|1{2
exp

„

´
1

2
pY ´XβqTΣ´1

pY ´Xβq



where Σ is the covariance matrix of the errors,

Σ “ σ2
ε ˆ diagt1{w2

1, . . . , 1{w
2
nu ” σ2

εW
´1

The maximum-likelihood estimators of β and σ2
ε are then

β̂ “ pXTWXq´1XTWY

σ̂2
ε “

ř

pwiε̂iq
2

n
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Correcting OLS standard errors for nonconstant variance

The covariance matrix of the ordinary-least-squares (OLS) estimator is

Var
´

β̂
¯

“ pXTXq´1XTVar pYqXpXTXq´1

“ σ2
ε pX

TXq´1

under the standard assumptions, including the assumption of constant error variance, Var pYq “
σ2
ε In. If, however, the errors are heteroscedastic but independent then Σ ” Var pYq “

diagtσ2
1, . . . , σ

2
nu, and

Var
´

β̂
¯

“ pXTXq´1XTΣXpXTXq´1

White (1980) shows that the following is a consistent estimator of Var
´

β̂
¯

Ṽarpβ̂q “ pXTXq´1XT Σ̂XpXTXq´1

with Σ̂ “ diagtσ̂2
1, . . . , σ̂

2
nu, where σ̂2

i is the OLS residual for observation i.

Subsequent work suggested small modifications to White’s coefficient-variance estimator,
and in particular simulation studies by Long and Ervin (2000) support the use of

Ṽar
˚
pβ̂q “ pXTXq´1XT Σ̂˚XpXTXq´1

where Σ̂˚ “ diagtσ̂2
i {p1 ´ hiq

2u and hi is the hat-value associated with observation i. In

large samples, where hi is small, the distinction between Ṽarpβ̂q and Ṽar
˚
pβ̂q essentially

disappears.

A rough rule is that nonconstant error variance seriouly degrades the least-squares estima-
tor only when the ratio of the largest to smallest variance is about 10 or more (or, more
conservatively, about 4 or more).

Nonlinearity

If E pY|Xq is not linear in X (in other words, E pε|Xq ‰ 0 for some x), β̂ may be biased and
inconsistent. Usually we employ “linearity by default” but we should try to make sure this
is appropriate: detect non-linearities and model them accurately.

Lowess smoother, JF 2.3

We can employ local averaging plots to help with diagnostics. Lowess method is in many
respects similar to local-averaging smoothers, except that instead of computing an average
Y -value within the neighborhood of a focal x, the lowess smoother computes a fitted value
based on a locally weighted least-squares line, giving more weight to observations in the
neighborhood that are close to the focal x than to those relatively far away. The name
“lowess” is an acronym for locally weighted scatterplot smoother and is sometimes rendered
as loess, for local regression.
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Component-plus-residual plots

Added-variable plots, introduced for detecting influential data, can reveal nonlinearity. How-
ever, the added-variable plots are not always useful for locating a transformation:

• The added-variable plot adjusts Xj for the other Xs.

• The unadjusted Xj is transformed in respecifying the model.

Moreover, Cook (1998, Section 14.5) shows that added-variable plots are biased toward
linearity when the correlations among the explanatory variables are large.

Component-plus-residual plots (also called partial-residual plots) are often an effective alter-
native. The component-plus-residual plots are not as suitable as added-variable plots for
revealing leverage and influence, though. The component-plus-residual plots are constructed
by

1. Compute residuals from full regression:

ε̂i “ Yi ´ Ŷi

2. Compute “linear component” of the partial relationship:

Ci “ β̂jXij

3. Add linear component to residual to get partial residual for the jth explanatory variable

ε̂
pjq
i “ ε̂i ` Ci “ ε̂i ` β̂jXij

4. Plot ε̂
pjq
¨ against X¨j

Figure 22.1 shows the component-plus-residual plots for the regression of log wages on vari-
ables (age, education and sex) of the 1994 wave of Statistics Canada’s Survey of Labour and
Income Dynamics (SLID) data. The SLID data set includes 3997 employed individuals who
were between 16 and 65 years of age and who resided in Ontario.
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Figure 21.6: Component-plus-residual plots for age and education in SLID regression of log
wages on these variables and sex. The solid lines are for lowess smooths with spans of 0.4,
and the broken lines are for linear least-squares fits. JF Figure 12.6.
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22 Lecture 22: March 23

Last time

• Diagnosing non-normality, non-constant error variance (JF chapter 12)

Today

• Diagnosing nonlinearity (JF chapter 12)

Weighted-least-squares estimation

Weighted-least-squares (WLS) regression provides an alternative approach to estimation in
the presence of nonconstant error variance. Suppose that the errors from the linear regression
model Y “ Xβ`ε are independent and normally distributed, with zero means but different
variances: εi „ Np0, σ2

i q. Suppose further that the variances of the errors are known up to
a constant of proportionality σ2

ε , so that σ2
i “ σ2

ε {w
2
i . Then the likelihood for the model is

Lpβ, σ2
ε q “

1

p2πqn{2|Σ|1{2
exp

„

´
1

2
pY ´XβqTΣ´1

pY ´Xβq



where Σ is the covariance matrix of the errors,

Σ “ σ2
ε ˆ diagt1{w2

1, . . . , 1{w
2
nu ” σ2

εW
´1

The maximum-likelihood estimators of β and σ2
ε are then

β̂ “ pXTWXq´1XTWY

σ̂2
ε “

ř

pwiε̂iq
2

n

Correcting OLS standard errors for nonconstant variance

The covariance matrix of the ordinary-least-squares (OLS) estimator is

Var
´

β̂
¯

“ pXTXq´1XTVar pYqXpXTXq´1

“ σ2
ε pX

TXq´1

under the standard assumptions, including the assumption of constant error variance, Var pYq “
σ2
ε In. If, however, the errors are heteroscedastic but independent then Σ ” Var pYq “

diagtσ2
1, . . . , σ

2
nu, and

Var
´

β̂
¯

“ pXTXq´1XTΣXpXTXq´1

White (1980) shows that the following is a consistent estimator of Var
´

β̂
¯

Ṽarpβ̂q “ pXTXq´1XT Σ̂XpXTXq´1
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with Σ̂ “ diagtσ̂2
1, . . . , σ̂

2
nu, where σ̂2

i is the OLS residual for observation i.

Subsequent work suggested small modifications to White’s coefficient-variance estimator,
and in particular simulation studies by Long and Ervin (2000) support the use of

Ṽar
˚
pβ̂q “ pXTXq´1XT Σ̂˚XpXTXq´1

where Σ̂˚ “ diagtσ̂2
i {p1 ´ hiq

2u and hi is the hat-value associated with observation i. In

large samples, where hi is small, the distinction between Ṽarpβ̂q and Ṽar
˚
pβ̂q essentially

disappears.

A rough rule is that nonconstant error variance seriouly degrades the least-squares estima-
tor only when the ratio of the largest to smallest variance is about 10 or more (or, more
conservatively, about 4 or more).

Nonlinearity

If E pY|Xq is not linear in X (in other words, E pε|Xq ‰ 0 for some x), β̂ may be biased and
inconsistent. Usually we employ “linearity by default” but we should try to make sure this
is appropriate: detect non-linearities and model them accurately.

Lowess smoother, JF 2.3

We can employ local averaging plots to help with diagnostics. Lowess method is in many
respects similar to local-averaging smoothers, except that instead of computing an average
Y -value within the neighborhood of a focal x, the lowess smoother computes a fitted value
based on a locally weighted least-squares line, giving more weight to observations in the
neighborhood that are close to the focal x than to those relatively far away. The name
“lowess” is an acronym for locally weighted scatterplot smoother and is sometimes rendered
as loess, for local regression.

Component-plus-residual plots

Added-variable plots, introduced for detecting influential data, can reveal nonlinearity. How-
ever, the added-variable plots are not always useful for locating a transformation:

• The added-variable plot adjusts Xj for the other Xs.

• The unadjusted Xj is transformed in respecifying the model.

Moreover, Cook (1998, Section 14.5) shows that added-variable plots are biased toward
linearity when the correlations among the explanatory variables are large.

Component-plus-residual plots (also called partial-residual plots) are often an effective alter-
native. The component-plus-residual plots are not as suitable as added-variable plots for
revealing leverage and influence, though. The component-plus-residual plots are constructed
by
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1. Compute residuals from full regression:

ε̂i “ Yi ´ Ŷi

2. Compute “linear component” of the partial relationship:

Ci “ β̂jXij

3. Add linear component to residual to get partial residual for the jth explanatory variable

ε̂
pjq
i “ ε̂i ` Ci “ ε̂i ` β̂jXij

4. Plot ε̂
pjq
¨ against X¨j

Figure 22.1 shows the component-plus-residual plots for the regression of log wages on vari-
ables (age, education and sex) of the 1994 wave of Statistics Canada’s Survey of Labour and
Income Dynamics (SLID) data. The SLID data set includes 3997 employed individuals who
were between 16 and 65 years of age and who resided in Ontario.

Figure 22.1: Component-plus-residual plots for age and education in SLID regression of log
wages on these variables and sex. The solid lines are for lowess smooths with spans of 0.4,
and the broken lines are for linear least-squares fits. JF Figure 12.6.

Data transformation

The family of powers and Roots, JF 4.1

A particularly useful group of transformations is the “family” of powers and roots:

X Ñ Xp
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wehre the arrow indicates that we intend to replace X with the transformed variable Xp. If
p is negative, then the transformation is an inverse power. For example, X´1 “ 1{X. If p is
a fraction, then the transformation represents a root. For example, X1{3 “

3
?
X.

It is more convenient to define the family of power transformations in a slightly more complex
manner, called the Box-Cox family of transformations (introduced in a seminal paper on
transformations by Box & Cox, 1964):

X Ñ Xppq
“
Xp ´ 1

p

Because Xppq is a linear function of Xp, the two transformations have the same essential
effect on the data, but, as is apparent in Figure 22.2

Figure 22.2: The Box-Cox family of power transformations X 1 of X. The curve labeled p is
the transformation Xppq, that is pXp ´ 1q{p; Xp0q is logepXq. JF Figure 4.1.

• Dividing by p preserves the direction of X, which otherwise would be reversed when p
is negative.

• The transformations Xppq are “matched” above X “ 1 both in level and in slope:

1. 1ppq “ 0, for all values of p

2. each transformation has a slope of 1 at X “ 1.
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• Descending the “ladder” of powers and roots towards Xp´1q compresses the large values
of X and spreads out the small ones. Ascending the ladder of powers and roots towards
Xp2q has the opposite effect. As p moves further from p “ 1 (i.e. no transformation) in
either direction, the transformation grows more powerful, increasingly “bending” the
data.

• The power transformation X0 is useless because it changes all values to 1, but we can
think of the log transformation as a kind of “zeroth” power:

lim
pÑ0

Xp ´ 1

p
“ logeX

and by convention, Xp0q ” logeX.

Box-Cox transformation of Y

Box and Cox (1964) suggested a power transformation of Y with the object of normalizing
the error distribution, stabilizing the error variance, and straightening the relationship of Y
to the Xs. The general Box-Cox model is

Y
pλq
i “ β0 ` β1Xi1 ` ¨ ¨ ¨ ` βpXip ` εi

where εi
iid
„ Np0, σ2

ε q, and

Y
pλq
i “

#

Y λi ´1

λ
for λ ‰ 0

loge Yi for λ “ 0

Note: in statistics, loge is often written as log.

For a particular choice of λ, the conditional maximized log-likelihood (see JF 12.5.1 p.324
footnote 55) is

loge Lpβ0, β1, . . . , βp, σ
2
ε |λq “ ´

n

2
p1` loge 2πq

´
n

2
loge σ̂

2
ε pλq ` pλ´ 1q

n
ÿ

i“1

loge Yi

where σ̂2
ε pλq “

ř

ε̂2i pλq{n and where ε̂ipλq are the residuals from the least-squares regression
of Y pλq on Xs. The least-squares coefficients from this regression are the maximum-likelihood
estimates of βs conditional on the values of λ.

A simple procedure for finding the maximum-likelihood estimator λ̂ is to evaluate the maxi-
mized loge L (called the profile log-likelihood) for a range of values of λ. To test:H0 : λ “ 1,
calculated the likelihood-ratio statistic

G2
0 “ ´2rloge Lpλ “ 1q ´ loge Lpλ “ λ̂qs

which is asymptotically distributed as χ2
1 with one degree of freedom under H0. A 95%

confidence interval for λ includes those values for which

loge Lpλq ą loge Lpλ “ λ̂q ´ 1.92
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The number 1.92 comes from 1
2
χ2

1,0.05 “ 0.5ˆ 1.962.

Figure 22.3 shows a plot of the profile log-likelihood against λ for the original SLID regression
of composite hourly wages on sex, age, and education. The maximum-likelihood estimate of
λ is λ̂ “ 0.09, and a 95% confidence interval runs from 0.04 to 0.13. Although 0 is outside
of the CI (confidence interval), it is essentially the same as log transformation of wages (the
correlation between log wages and wages0.09 is 0.9996).

Figure 22.3: Box-Cox transformations for the SLID regression of wages on sex, age, and
education. The maximized (profile) log-likelihood is plotted against the transformation pa-
rameter λ. The intersection of the line near the top of the graph with the profile log-likelihood
curve marks off a 95% confidence interval for λ. The maximum of the log-likelihood corre-
sponds to the MLE of λ. JF Figure 12.14.

Box-Tidwell transformation of Xs

Now, consider the model

Yi “ β0 ` β1X
γ1
i1 ` ¨ ¨ ¨ ` βpX

γp
ip ` εi

where the errors are independently distributed as εi
iid
„ Np0, σ2

ε q and all the Xij are positive.

The parameters of this model (β0, β1, . . . , βp, γ1, . . . , γp, and σ2
ε ) could be estimated by general

nonlinear least squares. Box and Tidwell (1962) suggested the following computationally
more efficient procedure (also yields a constructed-variable diagnostic):

1. Regress Y on X1, . . . , Xp, obtaining β̂0, β̂1, . . . , β̂p. (“Regress A on Bs” is the same
as “fitting the linear regression model with A as the response variable and Bs as the
explanatory variables”.)

2. Regress Y onX1, . . . , Xp and the constructed variablesX1 logeX1, . . . , Xp logeXp (again,
by fitting the model of Y “ β0`β1X1`¨ ¨ ¨`βpXp`δ1X1 logeX1`¨ ¨ ¨`δpXp logeXp`εi)
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to obtain β̃0, β̃1, . . . , β̃p, δ̃1, . . . , δ̃p. In general β̂i ‰ β̃i. (The constructed variables
result from the first-order Taylor-series approximation to X

γj
j evaluated at γj “ 1:

X
γj
j « X1 ` pγ1 ´ 1qX1 logeX1. )

3. The constructed variable Xj logeXj can be used to assess the need for a transforma-
tion of Xj by testing the null hypothesis H0 : δj “ 0. Added-variable plots for the
constructed variables are useful for assessing leverage and influence on the decision to
transform the Xs.

4. A preliminary estimate of the transformation parameter γj (not the MLE) is

γ̃j “ 1`
δ̃j

β̂j

where δ̃j is from step 2 and β̂j is from step 1.

Polynomial regression

A machinery of multiple regression to fit non-linear relationships between predictor(s) and
response.

• Linear: y “ β0 ` β1x` ε

• Quadratic: y “ β0 ` β1x` β2x
2 ` ε

• Cubic: y “ β0 ` β1x` β2x
2 ` β3x

3 ` ε

• kth order polynomial: y “ β0 ` β1x` β2x
2 ` ¨ ¨ ¨ ` βkx

k ` ε

Question:
Does quadratic model provide a significantly better fit than linear model?
Solution: Test H0 : β2 “ 0 vs. Ha : β2 ‰ 0.
Alternatively, compare the corresponding adjusted-R2 values.
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24 Lecture 24: April 4

Last time

• Diagnosing nonlinearity (JF chapter 12)

• Data transformation (JF chapter 4)

Today

• Collinearity (JF chapter 13, RD 8.3.2)

• Principal component analysis (JF 13.1.1, RD 8.3.4)

• Biased estimation:

– Ridge Regression

– Lasso Regression

Additional reference

• “A First Course in Linear Model Theory” by Nalini Ravishanker and Kipak K. Dey

• Lecture notes by Cedric Ginestet

Collinearity

In linear model
Y “ Xβ ` ε

ε „ N p0, σ2Inq

Collinearity (or multicollinearity) exists when there is “near-dependency” between the columns
of the design matrix X.

• Two or more columns.

• In other words, high correlation between explanatory variables.

• the data/model pair is ill-conditioned when XTX is nearly singular.

Perfect collinearity leads to rank-deficiency in X such that XTX is singular. In the case of
perfect collinearity, two or more columns are linear-dependent.

An example of perfect collinearity

Yi “ β0 ` β1Xi1 ` β2Xi2 ` β3Xi3 ` β4Xi4 ` β5Xi5 ` εi

Consider the case, where

• Yi represents the amount of sales.
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• Xi1, Xi2, ..., Xi4 are categorical that represent the quarter in which the sample is col-
lected: Xij “ 1psample i collected in quarter jq.

• Xi5 represents expense spent in advertising.

The dummy variable trap Xi4 “ 1 ´ Xi1 ´ Xi2 ´ Xi3. Recall that we need m ´ 1 dummy
variables for m categories.

An example of high correlation between predictors

Yi “ β0 ` β1Xi1 ` β2Xi2 ` εi

Consider the case, where

• Yi represents the salary of individual i.

• Xi1 represents the age of individual i.

• Xi2 represents the experience of individual i.

How to interpret β1?

We expect high correlation between age and experience.

Problems caused by multicollinearity

1. large standard errors of the regression coefficients

• small associated t-statistics

• conclusion that truly useful explanatory variables are insignificant in explaining
the regression

2. the sign of regression coefficients may be the opposite of what a mechanistic under-
standing of the problem would suggest

3. deleting a column of the predictor matrix will cause large changes in the coefficient
estimates for other variables

However, multicollinearity does not greatly affect the predicted values.

Signs and detections of multicollinearity

Some signs for multicollinearity:

1. Simple correlation between a pair of predictors exceeds 0.9 or R2.

2. High value of the multiple correlation coefficient with some high partial correlations
between the explanatory variables.

3. Large F-statistics with some small t-statistics for individual regression coefficients

Some approaches for detecting multicollinearity:
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1. Pairwise correlations among the explanatory variables

2. Variance inflation factor

3. Condition number

Variance inflation factor

For a multiple linear regression with k explanatory variables. We can regress Xj on the
pk ´ 1q other explanatory variables and denote Rj as the coefficient of determination.

Then the variance inflation factor (VIF) is defined as

VIFj “
1

1´R2
j

• VIFj P r1,`8q

• A suggested threshold is 10

• May use the averaged VIF “
k
ř

j“1

VIFj

N

k.

Condition index and condition number

We first scale the design matrix X into column-equilibrated predictor matrix XE such that

tXEuij “ Xij{

b

XT
j Xj.

Let XE “ UDVT be the singular-value decomposition (SVD) of the nˆ p matrix XE where
UTU “ VTV “ Ip and D “ diagpd1, d2, ..., dpq is a diagonal matrix with dj ě 0.

The jth condition index is defined as

ηpXEq “ dmax{dj, j “ 1, 2, ..., p

The condition number is defined as

C “ dmax{dmin

C ě 1, dmax “ max
1ďjďp

dj and dmin “ min
1ďjďp

dj

Some properties of the condition number

• Large condition number indicates evidence of multicollinearity

• Typical cutoff values, 10, 15 to 30.

Some problems with the condition number
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• practitioners have different opinions of whether X should be centered around their
means for SVD.

– centering may remove nonessential ill conditioning, e.g. CorpX,X2q

– centering may mask the role of the constant term in any underlying near-dependencies

• the degree of multicollinearity with dummy variables may be influenced by the choice
of reference category

• condition number is affected by the scale of the X measurements

– By scaling down any column of X, the condition number can be made arbitrarily
large

– Known as artificial ill-conditioning

– The condition number of the scaled matrix XE is also referred to as the scaled
condition number

Recall that XE “ UDVT is the singular-value decomposition (SVD) of XE, where UTU “

VTV “ Ip and D “ diagpd1, d2, ..., dpq is a diagonal matrix with dj ě 0.

Then

XT
EXE “ VDUTUDVT

“ VD2VT

is the spectral decomposition of the Gramian matrix XT
EXE with td2

ju being the eigenvalues
and V being the corresponding eigen vector matrix. This relationship links the condition
numbers to the eigen values of the Gramian matrix.

Variance decomposition method

The variance-covariance matrix of the coefficient

Covpβ̂q “ σ2
pXT

EXEq
´1

“ σ2VD´2VT

Its jth diagonal element is the estimated variance of the jth coefficient, β̂j. Then

V arpβ̂jq “ σ2
p
ÿ

h“1

v2
jh

d2
h

• Let qjh “
v2jh
d2h

and qj “
p
ř

h“1

qjh.
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Condition Proportions of variance

Index V arpβ̂1q V arpβ̂2q ... V arpβ̂3q

η1 π11 π12 ... π1p

η2 π21 π22 ... π2p
...

...
...

...
ηp πp1 πp2 ... πpp

Table 1: Table of condition index and proportions of variance

• The variance decomposition proportion is πjh “ qjh{qj.

• πjh denotes the proportion of the variance of the jth regression coefficient associated
with the hth component of its decomposition.

• The variance decomposition proportion matrix is Π “ tπjhu.

In practice, it is suggested to combine condition index and proportions of variance for mul-
ticollinearity diagnostic. Identify multicollinearity if

• Two or more elements in the jth row of matrix Π are relatively large

• And its associated condition index ηj is large too

Principal Components

The method of principal components, introduced by Karl Pearson (1901) and Harold Hotelling
(1933), provides a useful representation of the correlational structure of a set of variables.
Some advantages of the principal component analysis include

• more unified

• linear transformation of the original predictors into a new set of orthogonal predictors

• the new orthogonal predictors are called principal components

Principal components regression is an approach that inspects the sample data pY,Xq for
directions of variability and uses this information to reduce the dimensionality of the estima-
tion problem. The procedure is based on the observation that every linear regression model
can be restated in terms of a set of orthogonal predictor variables, which are constructed as
linear combinations of the original variables. The new orthogonal variables are called the
principal components of the original variables.

Let XTX “ Q∆QT denote the spectral decomposition of XTX, where ∆ “ diagtλ1, . . . , λpu
is a diagonal matrix consisting of the (real) eigenvalues of XTX, with λ1 ě ¨ ¨ ¨ ě λp and
Q “ pq1, . . . ,qpq denotes the matrix whose columns are the orthogonal eigenvectors of XTX
corresponding to the ordered eigenvalues. Consider the transformation

Y “ XQQTβ ` ε “ Zθ ` ε,
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where Z “ XQ, and θ “ QTβ.
The elements of θ are known as the regression parameters of the principal components. The

matrix Z “ tz1, . . . , zpu is called the matrix of principal components of XTX. zj “ Xqj is
the jth principal component of XTX and zTj zj “ λj, the jth largest eigenvalue of XTX.

Principal components regression consists of deleting one or more of the variables zj (which
correspond to small values of λj), and using OLS estimation on the resulting reduced regres-
sion model.

Derivation under standardized predictors, JF 13.1.1

Consider the vectors of standardized predictors, x˚1 ,x
˚
2 , . . . ,x

˚
p (obtained by subtracting the

mean and divided by standard deviation of the original predictor vectors). Because the
principal components are linear combinations of the original predictors, we write the first
principal component as

w1 “ A11x
˚
1 ` A21x

˚
2 ` ¨ ¨ ¨ ` Ap1x

˚
p

“ X˚a1

The variance of the first component becomes

S2
w1
“

1

n´ 1
wT

1 w1

“
1

n´ 1
aT1 X˚TX˚a1

“ aT1 RXXa1

where RXX “ 1
n´1

X˚TX˚. We want to maximize S2
w1

under the normalizing constraint

aT1 a1 “ 1 (otherwise S2
w1

can be arbitrarily large by inflating a1). Consider

F1 ” aTRXXa1 ´ L1pa
T
1 a1 ´ 1q

where L1 is a Lagrange multiplier. By differentiating this equation with respect to a1 and
L1,

BF1

Ba1

“ 2RXXa1 ´ 2L1a1

BF1

BL1

“ ´paT1 a1 ´ 1q

Setting the partial derivatives to 0 produces

pRXX ´ L1Ipqa1 “ 0

aT1 a1 “ 1

From the first equation, we see that L1 is an eigenvalue of RXX such that RXXa1 “ L1a1

such that
S2
w1
“ aT1 RXXa1 “ L1a

T
1 a1 “ L1

To maximize S2
w1

, we only need to pick the largest eigenvalue of RXX .
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25 Lecture 25: April 6

Last time

• Collinearity (JF chapter 13, RD 8.3.2)

• Principal component analysis (JF 13.1.1, RD 8.3.4)

Today

• Biased estimation:

– Ridge Regression

– Lasso Regression

• Model selection

Additional reference

• “A First Course in Linear Model Theory” by Nalini Ravishanker and Kipak K. Dey

• Lecture notes by Cedric Ginestet

Ridge Regression

Ridge regression and the Lasso regression are two forms of regularized regression. These
methods can be used to alleviate the consequences of multicollinearity.

1. When variables are highly correlated, a large coefficient in one variable may be alle-
viated by a large coefficient in another variable, which is negatively correlated to the
former.

2. Regularization imposes an upper threshold on the values taken by the coefficients,
thereby producing a more parsimonious solution, and a set of coefficients with smaller
variance.

Constrained optimization

Ridge regression is motivated by a constrained minimization problem, which can be formu-
lated as

β̂
ridge

“ arg min
βPRp

n
ÿ

i“1

pyi ´ xTi βq
2

subject to ||β||22 “
p
ÿ

j“1

β2
j ď t

for t ě 0.
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Use a Lagrange multiplier, we can rewrite the formula as

β̂
ridge

“ arg min
βPRp

t

n
ÿ

i“1

pyi ´ xTi βq
2
` λ

p
ÿ

j“1

β2
j u

for λ ě 0 and where there is a one-to-one correspondence between t and λ. λ is an arbitrary
constant usually referred to as the “ridge constant”.

Analytical solutions

The ridge-regression estimator has analytical solution

β̂
ridge

“ pXTX` λIq´1XTY

This is obtained by differentiating the objective function with respect to β and set it to 0:

B

Bβ
tpY ´XβqT pY ´Xβq ` λβTβu

“2pXTXqβ ´ 2XTY ` 2λβ

“0

Therefore,
pXTX` λIqβ “ XTY

Since we are adding a positive constant to the diagonal of XTX, we are , in general, producing
an invertible matrix, XTX` λI even if XTX is singular. Historically, this particular aspect
of ridge regression was the main motivation behind the adoption of this particular extension
of OLS theory.

The ridge regression estimator is related to the classical OLS estimator, β̂
OLS

, in the following
manner

β̂
ridge

“
“

I` λpXTXq´1
‰´1

β̂
OLS

,

assuming XTX is non-singular. This relationship can be verified by applying the definition

of β̂
OLS

,

β̂
ridge

“
“

I` λpXTXq´1
‰´1

pXTXq´1XTY

“ pXTX` λIq´1XTY

using the fact B´1A´1 “ pABq´1.

Moreover, when X is composed of orthonormal variables, such that XTX “ Ip, it then
follows that

β̂
ridge

“
1

1` λ
β̂
OLS
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Bias and variance of ridge estimator

Ridge estimation produces a biased estimator of the true parameter β. With the definition

of β̂
ridge

and the model assumption E pY|Xq “ Xβ, we obtain,

E
´

β̂
ridge

|X
¯

“ pXTX` λIq´1XTXβ

“ pXTX` λIq´1
pXTX` λI´ λIqβ

“ β ´ λpXTX` λIq´1β

where the bias of the ridge estimator is proportional to λ. The variance of the ridge estimator
is

Var
´

β̂
ridge

|X
¯

“ σ2
pXTX` λIq´1

pXTXqpXTX` λIq´1.

When λ increases, the inverted term pXTX ` λIq´1 is increasingly dominated by λI. The
variance of the ridge estimator, therefore, is a decreasing function of λ. This result is
intuitively reasonable because the estimator itself is driven toward 0.

Variance-bias tradeoff

The mean-squared error of an estimator can be decomposed into the sum of its squared bias
and sampling variance.

MSEpθ̂q “ E
´

pθ̂ ´ θq2
¯

“ Epθ̂2
q ` θ2

´ 2θEpθ̂q

Bias2
pθ̂q “

”

Epθ̂q ´ θ
ı2

“ E2
pθ̂q ` θ2

´ 2θEpθ̂q

Varpθ̂q “ Epθ̂2
q ´ E2

pθ̂q

Therefore
MSEpθ̂q “ Bias2

pθ̂q ` Varpθ̂q

The essential idea here is to trade a small amount of bias in the coefficient estimates for a
large reduction in coefficient sampling variance. Hoerl and Kennard (1970) prove that it is
always possible to choose a positive value of the ridge constant λ so that the mean-squared
error of the ridge estimator is less than the mean-squared error of the least-squares estimator.
These ideas are illustrated heuristically in Figure 25.1
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Figure 25.1: Trade-off of bias and against variance for the ridge-regression estimator. The
horizontal line gives the variance of the least-squares (OLS) estimator; because the OLS
estimator is unbiased, its variance and mean-squared error are the same. The broken line
shows the squared bias of the ridge estimator as an increasing function of the ridge constant
d (i.e. λ in our notes). The dotted line shows the variance of the ridge estimator. The
mean-squared error (MSE) of the ridge estimator, given by the heavier solid line, is the sum
of its variance and squared bias. For some values of d, the MSE error of the ridge estimator
is below the variance of the OLS estimator. JF Figure 13.9.

Lasso regression

We have seen that ridge regression essentially re-scales the OLS estimates. The lasso, by
contrast, tries to produce a sparse solution, in the sense that several of the slope parameters
will be set to zero.

Constrained optimization

Different from the L2 penalty for ridge regression, the Lasso regression employs L1-penalty.

β̂
lasso

“ arg min
βPRp

n
ÿ

i“1

pyi ´ xTi βq
2

subject to ||β||1 “
p
ÿ

j“1

|βj| ď t
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for t ě 0; which can again be re-formulated using the Lagrangian for the L1-penalty,

β̂
lasso

“ arg min
βPRp

t

n
ÿ

i“1

pyi ´ xTi βq
2
` λ

p
ÿ

j“1

|βj|u

where λ ą 0 and, as before, there exists a one-to-one correspondence between t and λ.

Parameter estimation

Contrary to ridge regression, the Lasso does not have a closed-form solution. The L1-
penalty makes the solution non-linear in yi’s. The above constrained minimization is a
quadratic programming problem, for which many solvers exist.

Choice of Hyperparameters

Regularization parameter

The choice of λ in both ridge and lasso regressions is more of an art than a science. This
parameter can be constructed as a complexity parameter, since as λ increases, less and less
effective parameters are likely to be included in both ridge and lasso regressions. Therefore,
one can adopt a model selection perspective and compare different choices of λ using cross-
validation or an information criterion. That is, the value of λ should be chosen adaptively,
in order to minimize an estimate of the expected prediction error (as in cross-validation), for
instance, which is well approximated by AIC. We will discuss model selection in more detail
later.

Bayesian perspective

The penalty terms in ridge and lasso regression can also be justified, using a Bayesian
framework, whereby these terms arise as aresult of the specification of a particular prior
distribution on the vector of slope parameters.

1. The use of an L2-penalty in multiple regression is analogous to the choice of a Normal
prior on the βj’s, in Bayesian statistics.

yi
iid
„ N pβ0 ` xTi β, σ

2
q, i “ 1, . . . , n

βj
iid
„ N p0, τ 2

q, j “ 1, . . . , p

2. Similarly, the use of an L1-penalty in multiple regression is analogous to the choice of
a Laplace prior on the βj’s, such that

βj
iid
„ Laplacep0, τ 2

q, j “ 1, . . . , p

In both cases, the value of the hyperparameter, τ 2, will be inversely proportional to the
choice of the particular value for λ. For ridge regression, λ is exactly equal to the shrinkage
parameter of the hierarchical model, λ “ σ2{τ 2.
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Model selection

Model selection is conceptually simplest when our goal is prediction – that is, the develop-
ment of a regression model that will predict new data as accurately as possible. However,
prediction is not often the only desirable characteristic in a statistical model that model in-
terpretation, data summary and explanations are also desired. We discuss several criteria for
selecting among m competing statistical models M “ tM1,M2, . . . ,Mmu for n observations
of a response variable Y and associated predictors Xs.

Adjsted-R2

The squared multiple correlation “corrected” (or “adjusted”) for degrees of freedom is intu-
itively reasonable criterion for comparing linear-regression models with different numbers
of parameters. Suppose model Mj is one of the models under consideration. If Mj has
sj regression coefficients (including the regression constant) and is fit to a data set with n
observations, then the adjusted-R2 for the model is

R2
adj,j “ 1´

n´ 1

n´ sj
ˆ
RSSj
TSS

Models with relatively large numbers of parameters are penalized for their lack of parsimony.
The model with the highest adjusted-R2 value is selected as the best model. Beyond this
intuitive rationale, however, there is no deep justification for using R2

adj as a model selection
criterion.

Cross-validation and generalized cross-validation

The key idea in cross-validation (more accurately, leave-one-out cross-validation) is to omit

the ith observation to obtain an estimate of EpY |xiq based on the other observations as Ŷ
pjq
´i

for model Mj. Omitting the ith observation makes the fitted value Ŷ
pjq
´i independent of the

observed value Yi. The cross-validation criterion for model Mj is

CVj ”

řn
i“1

”

Ŷ
pjq
´i ´ Yi

ı2

n

We prefer the model with the smallest value of CVj.

In linear least-squares regression, there are efficient procedures for computing the leava-one-
out fitted values Ŷ

pjq
´i that do not require literally refitting the model (recall the discussions

of standardized residuals). However, in other applications, leave-one-out cross-validation can
be computationally expensive (that requires literally refitting the model n times).

An alternative is to divide the data into a relatively small number of subsets of roughly
equal size and to fit the model omitting one subset at a time, obtaining fitted values for all
observations in the omitted subset. This method is termed as K-fold cross-validation where
K is the number of subsets. The cross-validation criterion is defined the same way as before.

97



An alternative criterion is to approximate CV by the generalized cross-validation criterion

GCVj ”
nˆRSSj
df 2
resj

which however is less popular given the increasing computational power we have in the
modern era.

AIC and BIC

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are
also popular model selection criteria. Both are members of a more general family of penalized
model-fit statistics (in the form of “*IC”), applicable to regression models fit by maximum
likelihood, that take the form

˚ICj “ ´2 loge Lpθ̂jq ` csj

where Lpθ̂jq is the maximized likelihood under model Mj; θ̂j is the vector of parameters
of the model (including, for example, regression coefficients and an error variance); sj is

the number of parameters in θ̂j; and c is a constant that differs from one model selection

criterion to another. The first term, ´2 loge Lpθ̂jq, is the residual deviance under the model;
for a linear model with normal errors, it is simply the residual sum of squares.

The model with the smallest *IC is the one that receives most support from the data (the
selected model). The AIC and BIC are defined as follows:

AICj ” ´2 loge Lpθ̂jq ` 2sj

BICj ” ´2 loge Lpθ̂jq ` sj logepnq

The lack-of-parsimony penalty for the BIC grows with the sample size, while that for the
AIC does not. When n ě 8 the penalty for the BIC is larger than that for the AIC resulting
in BIC tends to nominate models with fewer parameters. Both AIC and BIC are based on
deeper statistical considerations, please refer to JF 22.1 sections A closer look at the AIC
and A closer look at the BIC for more details.

Sequential procedures

Besides the ranking systems above, there is another class loosely defined as sequential pro-
cedures for model selection.

1. Forward selection

2. Backwards elimination

3. Stepwise selection
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Forward selection :

1. Choose a threshold significance level for adding predictors, “SLENTRY” (SL stands
for significance level). For example, SLENTRY “ 0.10.

2. Initialize with y “ β0 ` ε.

3. Form a set of candidate models that differ from the working model by addition of one
new predictor

4. Do any of the added predictors have p´ value ď SLENTRY ?

• Yes: add predictor with smallest p-value to working model + repeat steps 3 to 4.

• No: stop. Final model = working model.

Backwards elimination

1. Choose threshold level for removing predictors. For example, SLSTAY “ 0.05.

2. Initialize with most general model (biggest possible): y “ β0 ` β1x1 ` ¨ ¨ ¨ ` ε.

3. Form a set of candidate models that differ from working model by deletion of one term

4. Do any p´ value ą SLSTAY (from fitting the current working model)?

• Yes: remove the term with largest p-value and repeat steps 3 and 4.

• No: stop. Final model = working model.

Stepwise Alternate forwards + backwards steps. Initialize with y “ β0` ε. Stop when con-
secutive forward + backward steps do not change working model. (SLENTRY ď SLSTAY )

Some examples

• Model selection by AIC

• Model selection by AIC and Lasso
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27 Lecture 27: April 11

Last time

• Biased estimation:

– Ridge Regression

– Lasso Regression

• Model selection

Today

• Analysis of Variance (JF chapter 8)

– one-way anova

– two-way anova

Additional reference

Course notes by Dr. Jason Osborne.

Analysis of Variance

The term analysis of variance is used to describe the partition of the response-variable sum
of squares into “explained” and “unexplained” components, noting that this decomposition
applies generally to linear models. For historical reasons, analysis of variance (abbreviated
ANOVA) also refers to procedures for fitting and testing linear models in which the explana-
tory variables are categorical.

One-way ANOVA

Suppose that there are no quantitative explanatory variables, but only a single factor (cat-
egorical data). For example, for a three-category classification, we have the model

Yi “ α ` γ1Di1 ` γ2Di2 ` εi (3)

employing the following coding for the dummy regressors:

Group D1 D2

1 1 0
2 0 1
3 0 0

The expectation of the response variable in each group (i.e. in each category or level of the
factor) is the population group mean, denoted by µj for the jth group. Equation 3 produces
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the following relationship between group means and model parameters:

Group 1: EpYi|Di1 “ 1, Di2 “ 0q “ α ` γ1 ˆ 1` γ2 ˆ 0 “ α ` γ1

Group 2: EpYi|Di1 “ 0, Di2 “ 1q “ α ` γ1 ˆ 0` γ2 ˆ 1 “ α ` γ2

Group 3: EpYi|Di1 “ 0, Di2 “ 0q “ α ` γ1 ˆ 0` γ2 ˆ 0 “ α

There are three parameters (α, γ1 and γ2) and three group means, so we can solve uniquely
for the parameters in terms of the group means:

α̂ “ µ3

γ̂1 “ µ1 ´ µ3

γ̂2 “ µ2 ´ µ3

Not surprisingly, α represents the mean of the baseline category (Group 3) and that γ1 and
γ2 captures differences between the other group means and the mean of the baseline category.

notations

Because observations are partitioned according to groups, it is convenient to let Yjk denote
the kth observation within the jth of m groups. The number of observations in the jth
group is nj, and the total number of observations is n “

řm
j“1 nj. Let µj ” E pYjkq be the

population mean in group j.

The one-way ANOVA model is
Yjk “ µ` αj ` εjk

where µ represents the general level of response variable in the population; αj represents the
effect on the response variable of membership in the jth group; εjk is an error variable that

follows the usual linear-model assumptions: εjk
iid
„ N p0, σ2q.

By taking expectations, we have
µj “ µ` αj

The parameters of the model are, therefore, underdetermined, for there are m`1 parameters
(including µ) but only m population group means (recall the dummy variable trap intro-
duced in collinearity). To produce easily interpretable parameters and that estimates and
generalizes usefully to more complex models, we impose the sum-to-zero constraint

m
ÿ

j“1

αj “ 0

With the sum-to-zero constraint, we solve for the parameters

µ̂ “

ř

µj
m

α̂j “ µj ´ µ

The fitted Y values are the group means for the one-way ANOVA model:

Ŷjk “ µ̂` α̂j
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and the regression and residual sums of squares therefore take particularly simple forms in
one-way ANOVA:

RegSS “
m
ÿ

j“1

nj
ÿ

k“1

pŶjk ´ Ȳ q
2
“

m
ÿ

j“1

njpȲj ´ Ȳ q
2

RSS “
m
ÿ

j“1

nj
ÿ

k“1

pYjk ´ Ŷjkq
2
“

m
ÿ

j“1

nj
ÿ

k“1

pYjk ´ Ȳjq
2

and can be presented in an ANOVA table.

Table 2: General one-way ANOVA table

Source Sum of Squares df Mean Square F H0

Groups
ř

njpȲj ´ Ȳ q
2 m´ 1 RegSS

m´1
RegMS
RMS

α1 “ ¨ ¨ ¨ “ αm “ 0

Residuals
řř

pYjk ´ Ȳjq
2 n´m RSS

n´m

Total
řř

pYjk ´ Ȳ q
2 n´ 1

Sometimes, the column of Source can also be denoted with Treatments (for Groups) and
Error (for Residuals). And a balanced one-way ANOVA model has the same number of
observations in one group (or treatment), in other words, n1 “ ¨ ¨ ¨ “ nm “

n
m

.

one-way ANOVA example

The following data come from study investigating binding fraction for several antibiotics
using n “ 20 bovine serum samples:

Antibiotic Binding Percentage Sample mean
Penicillin G 29.6 24.3 28.5 32.0 28.6
Tetracyclin 27.3 32.6 30.8 34.8 31.4

Streptomycin 5.8 6.2 11.0 8.3 7.8
Erythromycin 21.6 17.4 18.3 19 19.1

Chloramphenicol 29.2 32.8 25.0 24.2 27.8

Question: Are the population means for these 5 treatments plausibly equal?
Answer:
One model parameterizes antibiotic effects as differences from mean

Yjk “ µ` αj ` εjk

for j “ 1, . . . , 5 and k “ 1, . . . , 4, where εjk
iid
„ N p0, σ2q errors.
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Unknown parameters

1. µ - overall population mean (average of 5 treatment population means)

2. αj - difference between (population) mean for treatment j and µ

3. σ2 - (population) variance of binding fraction for a given antibiotic

To test H0 : α1 “ α2 “ ¨ ¨ ¨ “ α5 “ 0, we just carry out one-way ANOVA:

Source Sum of Squares df Mean Square F

Groups 1481 4 370 41

Residuals 136 15 9

Total 1617 19

Compared to F p0.05, 4, 15q “ 3.06, we have F “ 41 ą 3.06.
Conclusion: we reject the null hypothesis of all population means for 5 treatment being equal
at 0.05 significance level.

How do we obtain standard errors of parameter estimates? (HW)

Two-Way ANOVA

The inclusion of a second factor permits us to model and test partial relationships, as well
as to introduce interactions. Let’s take a look at the patterns of relationship that can occur
when a quantitative response variable is classified by two factors.

Patterns of Means in the two-way classification

Consider the following table:

C1 C2 . . . Cc

R1 µ11 µ12 . . . µ1c µ1¨

R2 µ21 µ22 . . . µ2c µ2¨

...
...

...
...

...

Rr µr1 µr2 . . . µrc µr¨

µ¨1 µ¨2 . . . µ¨c µ¨¨

The factors, R and C (for “rows” and “columns” of the table of means), have r and c
categories, respectively. The factor categories are denoted Rj and Ck. Within each cell of
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the design - that is, for each combination of categories tRj, Cku of the two factors - there is
a population cell mean µjk for the response variable. Extending the dot notation, we have

µj¨ ”

řc
k“1 µjk
c

is the marginal mean of the response variable in row j.

µ¨k ”

řr
j“1 µjk

r

is the marginal mean in column k. And

µ¨¨ ”

ř

j

ř

k µjk

r ˆ c

is the grand mean.

Figure 27.1: Interaction in the two-way classification. In (a), the parallel profiles of means
(given by the white and black circles connected by solid lines) indicate that R and C do not
interact in affecting Y . The R-effect – that is, the difference between the two profiles – is
the same at both C1 and C2. Likewise, the C-effect – that is , the rise in the line from C1

to C2 – is the same for both profiles. In (b), the R-effect differs at the two categories of C,
and the C-effect differs at the two categories of R: R and C interact in affecting Y . In both
graphs, the column marginal means µ¨1 and µ¨2 are shown as averages of the cell means in
each column (represented by the gray circles connected by broken lines). JF Figure 8.2.
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28 Lecture 28: April 13

Last time

• One-way ANOVA

Today

• Two-way ANOVA

• ANCOVA

• Linear contrasts of means

Additional reference

Course notes by Dr. Jason Osborne.

Two-way ANOVA model

The two-way ANOVA model, suitably defined, provides a convenient means for testing the
hypotheses concerning interactions and main effects. The model is

Yijk “ µ` αj ` βk ` γjk ` εijk

where Yijk is the ith observation in row j, column k of the RC table; µ is the general mean
of Y ; αj and βk are the main-effect parameters; γjk are interaction effect parameters; and

εijk are errors satisfying the usual linear-model assumptions (i.e. εijk
iid
„ N p0, σ2q). By taking

expectations, we have
µjk ” EpYijkq “ µ` αj ` βk ` γjk

We have r ˆ c population cell means with 1 ` r ` c ` r ˆ c model parameters. Similar to
one-way ANOVA model, we add in additional constraints to make the model identifiable.

r
ÿ

j“1

αj “ 0

c
ÿ

k“1

βk “ 0

r
ÿ

j“1

γjk “ 0 for all k “ 1, . . . , c

c
ÿ

k“1

γjk “ 0 for all j “ 1, . . . , r
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The constraints produce the following solution for model parameters in terms of population
cell and marginal means (and we add a hat for their estimates using the sample means):

µ “ µ¨¨

αj “ µj¨ ´ µ¨¨

βk “ µ¨k ´ µ¨¨

γjk “ µjk ´ µ´ αj ´ βk

“ µjk ´ µj¨ ´ µ¨k ` µ¨¨

Hypotheses with two-way ANOVA

Some interesting hypotheses:

1. Are the cell means all equal? (Equivalent to one-factor ANOVA’s “overall F-test”)
H0 : µ11 “ µ12 “ ¨ ¨ ¨ “ µrc vs. Ha : At least two µij differ

2. Are the marginal means for row main effect equal?
H0 : µ1¨ “ µ2¨ “ ¨ ¨ ¨ “ µr¨ vs Ha : At least two µj¨ differ
which is equivalent as testing for no row main effects H0 : all αj “ 0 (why?)
Answer: This is because αj “ µj¨ ´ µ¨¨ such that all αj “ 0 is the equivalent as all
marginal means are equal µ1¨ “ µ2¨ “ ¨ ¨ ¨ “ µr¨.

3. Are the marginal means for column main effect equal?
H0 : µ¨1 “ µ¨2 “ ¨ ¨ ¨ “ µ¨c vs Ha : At least two µ¨k differ

4. Do the factors interact? In other words, does effect of one factor depend on the
other factor? H0 : µij “ µ¨¨ ` pµi¨ ´ µ¨¨q ` pµ¨j ´ µ¨¨q vs Ha : At least one µij ‰
µ¨¨ ` pµi¨ ´ µ¨¨q ` pµ¨j ´ µ¨¨q
The null hypothesis is also equivalent as H0 : all γjk “ 0.

Testing hypotheses in two-way ANOVA

We follow the notations of JF for incremental sums of squares in ANOVA:

SSpγ|α, βq “ SSpα, β, γq ´ SSpα, βq

SSpα|β, γq “ SSpα, β, γq ´ SSpβ, γq

SSpβ|α, γq “ SSpα, β, γq ´ SSpα, γq

SSpα|βq “ SSpα, βq ´ SSpβq

SSpβ|αq “ SSpα, βq ´ SSpαq

where SSpα, β, γq denotes the regression sum of squares for the full model which includes
both sets of main effects and the interaction. SSpα, βq denotes the regression sum of squares
for the no-interaction model and SSpα, γq denotes the regression for the model that omits the
column main-effect regressors. Note that the last model violates the principle of marginality
because it includes the interaction regressors but omits the column main effects. However, it
is useful for constructing the incremental sum of squares for testing the column main effects.
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Additional readings: Notes on 3 types of Sum of Squares by Dr. Nancy Reid.

We now have the two-way ANOVA table

Table 3: Two-way ANOVA table

Source Sum of Squares df H0

R SSpα|β, γq r ´ 1 all αj “ 0

SSpα|βq r ´ 1 all αj “ 0 | all γjk “ 0

C SSpβ|α, γq c´ 1 all βk “ 0

SSpβ|αq c´ 1 all βk “ 0 | all γjk “ 0

RC SSpγ|α, βq (r -1)(c - 1) all γjk “ 0

Residuals TSS´ SSpα, β, γq n - rc

Total TSS n -1

where the residual sum of squares

RSS “
ÿ

i

ÿ

j

ÿ

k

pYijk ´ Ȳjkq
2

When test for the hypothesis, use the corresponding SS and df together with the residual SS
and df to construct the F -statistic.

F “
SS{df

RSS{dfresidual

There are two reasonable procedures for testing main-effect hypotheses in two-way ANOVA:

1. Tests based on SSpα|β, γq and SSpβ|α, γq (“type III” tests) employ models that violate
the principle of marginality, but the tests are valid whether or not interactions are
present.

2. Tests based on SSpα|βq and SSpβ|αq (“type II” tests) conform to the principle of
marginality but are valid only if interactions are absent, in which case they are maxi-
mally powerful.

Some more jargon:

• Experimental unit (EU): entity to which experimental treatment is assigned.
For example, Assign fertilizer treatment to fields. Fields = EU.

• Measurement unit (MU): entity that is measured.
For example, Measure yields at several subplots within each field. MU: subplot
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• Treatment structure: describes how different experimental factors are combined to
generate treatments.
For example, Fertilizers: A, B, C; Irrigation: High, Low.

• Randomization structure: how treatments are assigned to EUs.

• Simplest treatment structure: single experimental factor with multiple levels. Ex.
Fertilizers A vs B vs C.

• Simplest randomization structure: Completely randomized design – Experimental
treatments assigned to EUs entirely at random.

Example: Honeybee data

Entomologist records energy expended (y) by N “ 27 honeybees at a “ 3 temperature
(A) levels (20, 30, 40˝C) consuming liquids with b “ 3 levels of sucrose concentration (B)
(20%, 40%, 60%) in a balanced, completely randomized crossed 3ˆ 3 design.

Temp Suc Sample

20 20 3.1 3.7 4.7

20 40 5.5 6.7 7.3

20 60 7.9 9.2 9.3

30 20 6 6.9 7.5

30 40 11.5 12.9 13.4

30 60 17.5 15.8 14.7

40 20 7.7 8.3 9.5

40 40 15.7 14.3 15.9

40 60 19.1 18.0 19.9

1. What is the experimental unit?
EU = honeybee.

2. What is the treatment structure?
Three levels of temperature (A) are combined with each of the three sucrose concen-
trations (B).

3. Finish the table below
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Source df

A

B

AˆB

Residual

Total

Answer:

Source df

A 2

B 2

AˆB 4

Residual 18

Total 26

4. Consider the model
Yijk “ µ` αi ` βj ` pαβqij ` εijk

where i “ 1, 2, . . . , a, j “ 1, 2, . . . , b and k “ 1, 2, . . . , n for a balanced design.
Deviation:

• total: yijk ´ ȳ```

• due to level i of factor A: ȳi`` ´ ȳ```

• due to level j of factor B: ȳ`j` ´ ȳ```

• due to levels i of factor A and j of factor B after subtracting main effects:

ȳij` ´ ȳ``` ´ pȳi`` ´ ȳ```q ´ pȳ`j` ´ ȳ```q “ ȳij` ´ ȳi`` ´ ȳ`j` ` ȳ```

Use the following equations to calculate the Sum of Squares and fill out the ANOVA
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table.
SSrTots “

ÿ

i

ÿ

j

ÿ

k

pyijk ´ ȳ```q
2

SSrAs “
ÿ

i

ÿ

j

ÿ

k

pȳi`` ´ ȳ```q
2

SSrBs “
ÿ

i

ÿ

j

ÿ

k

pȳ`j` ´ ȳ```q
2

SSrABs “
ÿ

i

ÿ

j

ÿ

k

pȳij` ´ ȳi`` ´ ȳ`j` ` ȳ```q
2

SSrEs “
ÿ

i

ÿ

j

ÿ

k

pȳijk ´ ȳij`q
2

where

ȳij` “
1

n

ÿ

k

yijk

ȳi`` “
1

b

ÿ

j

ȳij` “
1

bn

ÿ

j

ÿ

k

yijk

ȳ`j` “
1

a

ÿ

i

ȳij` “
1

an

ÿ

i

ÿ

k

yijk

ȳ``` “
1

a

ÿ

i

ȳi`` “
1

b

ÿ

j

ȳ`j`

“
1

abn

ÿ

i

ÿ

j

ÿ

k

yijk

Source df Sum of Squares Mean Square F

A

B

AˆB

Residual

Total

Answer:
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Source df Sum of Squares Mean Square F

Temp 2 293.16 146.58 162.00

Suc 2 309.96 154.98 171.28

Temp ˆ Suc 4 27.13 6.78 7.50

Residual 18 16.29 0.90

Total 26 646.53

A three-factor example

In a balanced, complete, crossed design, N “ 36 shrimp were randomized to abc “ 12
treatment combinations from the factors below:

• A1: Temperature at 25˝C

• A2: Temperature at 35˝C

• B1: Density of shrimp population at 80 shrimp/40l

• B2: Density of shrimp population at 160 shrimp/40l

• C1: Salinity at 10 units

• C2: Salinity at 25 units

• C3: Salinity at 40 units

The response variable of interest is weight gain Yijkl after four weeks.

Three-way ANOVA model

Yijkl “ µ` αi ` βj ` γk

` pαβqij ` pαγqik ` pβγqjk

` pαβγqijk ` εijkl

i “ 1, 2

j “ 1, 2

k “ 1, 2, 3

l “ 1, 2, 3

εijkl
iid
„ N p0, σ2

q
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Many constraints such as (over one dimension):

ÿ

i

αi “ 0

ÿ

i

pαβqij “
ÿ

j

pαβqij “ 0 for all i, j

ÿ

i

pαβγqijk “
ÿ

j

pαβγqijk “
ÿ

k

pαβγqijk “ 0 for all i, j, k

Now, please finish the table below

Source df

A

B

C

AˆB

Aˆ C

B ˆ C

AˆB ˆ C

Residual

Total

Answer:
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Source df

A 1

B 1

C 2

AˆB 1

Aˆ C 2

B ˆ C 2

AˆB ˆ C 2

Residual 24

Total 35

The three-way ANOVA model includes parameters for

• Main effects: αi, βj and γk.

• Two-way interactions between each pair of factors: pαβqij, pαγqik and pβγqjk.

• Three-way interaction among all three factors: pαβγqijk.

Readings:

1. JF 8.3.1 on parameter estimates and hypothesis testing for three-way ANOVA model.

2. JF 8.3.2 on Higher-order classifications.

Analysis of Covariance

Analysis of covariance (ANCOVA) is a term used to describe linear models that contain both
qualitative and quantitative explanatory variables. The method is, therefore, equivalent to
dummy-variable regression, discussed in the previous lectures, although the ANCOVA model
is parametrized differently from the dummy-regression model.

Covariate is a variable known to affect the response that

1. differs among EUs

2. reflects differences that exist independently of experimental treatment.

A nutrition example

A nutrition scientist conducted an experiment to evaluate the effects of four vitamin supple-
ments on the weight gain of laboratory animals. The experiment was conducted in a com-
pletely randomized design with N “ 20 animals randomized to a “ 4 supplement groups,
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each with sample size n ” 5. The response variable of interest is weight gain, but calorie
intake z was measured simultaneously.

Diet ypgq Diet y Diet y Diet y

1 48 2 65 3 79 4 59

1 67 2 49 3 52 4 50

1 78 2 37 3 63 4 59

1 69 2 75 3 65 4 42

1 53 2 63 3 67 4 34

1 ȳ1` “ 63 2 ȳ2` “ 57.8 3 ȳ3` “ 65.2 4 ȳ4` “ 48.8

1 s1 “ 12.3 2 s2 “ 14.9 3 s3 “ 9.7 4 s4 “ 10.9

Question: Is there evidence of a vitamin supplement effect?

Df Sum Sq Mean Sq F value Pr(ąF)

Diet 3 797.8 265.9 1.823 0.184

Residuals 16 2334.4 145.9

Conclusion: at α “ 0.05 level, there is no significant difference between vitamin supplement
levels on weight gain.

But calorie intake z was measured simultaneously:

Diet ypgq z Diet y z Diet y z Diet y z

1 48 350 2 65 400 3 79 510 4 59 530

1 67 440 2 49 450 3 52 410 4 50 520

1 78 440 2 37 370 3 63 470 4 59 520

1 69 510 2 75 530 3 65 470 4 42 510

1 53 470 2 63 420 3 67 480 4 34 430

Question: How and why could these new data be incorporated into analysis?
Answer: ANCOVA can be used to reduce unexplained variation.

ANCOVA model,
yij “ µ` αi ` βzij ` εij
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where µ is the reference level, αi is the main effect of treatment, β is the partial regression

coefficient, and εij
iid
„ N p0, σ2q. The model is equivalent as the dummy-variable regression

model,
Yi “ β0 ` β1xi1 ` β2xi2 ` β3xi3 ` βzzi ` εi for i “ 1, . . . , 20

Finish the table below

Source df

Diet

Covariate 1

Residual

Total

Answer:

Source df

Diet 3

Covariate 1

Residual 15

Total 19

To test for difference among treatments. The null hypothesis in terms of αi is
H0 : α1 “ α2 “ ¨ ¨ ¨ “ α4 “ 0 v.s. Ha : at least one αi ‰ 0
And the null hypothesis in terms of βi is
H0 : β1 “ β2 “ β3 “ 0 v.s. Ha : at least one βi ‰ 0

Question: which two models do we compare when testing the above null hypothesis?
Answer:

• In terms of ANOVA and ANCOVA models, we compare the one-way “ANOVA” model
(actually the simple linear regression model) with only the covariate term to the AN-
COVA model that has both the covariate and the treatment.
aov(y „ z, data = vitamin.supplement) vs aov(y „ Diet + z, data = vitamin.supplement)

• In terms of the dummy-variable regression model, we compare the simple linear re-
gression model of regression y on z to the model that includes the dummy-variable for
Diet (treatments).

lm(y „ z, data = vitamin.supplement) vs lm(y „ Diet + z, data = vitamin.supplement)

115



30 Lecture 30: April 18

Last time

• ANCOVA

Today

• Linear contrasts of means

• Sampling distribution of linear contrasts

• Multiple comparisons

• Sample size computations for one-way ANOVA

• Lack of fit test

Additional reference

Course notes by Dr. Jason Osborne.

Linear contrasts of means

With ANOVA (or ANCOVA) models, we do not generally test hypotheses about individual
coefficients (but we can do so if we wish). For dummy-coded regressors in one-way ANOVA,
a t-test or F -test of H0 : α1 “ 0, for example, is equivalent to testing for the difference in
means between the first group and the baseline group, H0 : µ1 “ µm.

Consider the one-way ANOVA model:

Yij “ µi ` εij, i “ 1, 2, . . . , t, and j “ 1, 2, . . . , ni

with εij
iid
„ N p0, σ2q.

A linear function of the group means of the form

θ “ c1µ1 ` c2µ2 ` ¨ ¨ ¨ ` ctµt

is called a linear combination of the treatment means. And the ci’s are the coefficients of
the linear combination. If

c1 ` c2 ` ¨ ¨ ¨ ` ct “
t
ÿ

j“1

cj “ 0,

the linear combination is called a contrast. Contrasts with more than two non-zero coeffi-
cients are called complex contrasts.
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Let two contrasts θ1 and θ2 be given by

θ1 “ c1µ1 ` ¨ ¨ ¨ ` ctµt “
t
ÿ

j“1

cjµj

θ2 “ d1µ1 ` ¨ ¨ ¨ ` dtµt “
t
ÿ

j“1

djµj,

then the two contrasts θ1 and θ2 are mutually orthogonal if the products of their coefficients
sum to zero:

c1d1 ` ¨ ¨ ¨ ` ctdt “
t
ÿ

j“1

cjdj “ 0

θi and θj are orthogonal ùñ θ̂i and θ̂j are statistically independent.

Types of effects

Consider the following two-way ANOVA model:

Yijk “ µ` αi ` βj ` pαβqij ` εijk

i “ 1, 2 “ a and j “ 1, 2 “ b and k “ 1, 2, . . . , 7 “ n.

εijk
iid
„ N p0, σ2q. Parameter constraints:

ř

i αi “
ř

j βj “ 0 and
ř

ipαβqij “ 0 for each j and
ř

jpαβqij “ 0 for each i.

• Factor A: AGE has a “ 2 levels - A1 : younger and A2 : older

• Factor B: GENDER has b “ 2 levels - B1 : female and B2 : male

Three kinds of effects in this 2ˆ 2 design:

1. Simple effects are simple contrasts.

• µpA1Bq “ µ12 ´ µ11 - simple effect of gender for young folks.

• µpAB1q “ µ21 ´ µ11 - simple effect of age for women.

2. Interaction effects are differences of simple effects: µpABq “ µpAB2q ´ µpAB1q “

pµ22 ´ µ12q ´ pµ21 ´ µ11q

• difference between simple age effects for men and women

• difference between simple gender effects for old and young folks

• interaction effect of AGE and GENDER.

3. Main effects are averages or sums of simple effects

µpAq “
1

2
pµpAB1q ` µpAB2qq

µpBq “
1

2
pµpA1Bq ` µpA2Bqq
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Sampling distribution of linear contrast estimates

For a linear contrast
θ “ c1µ1 ` ¨ ¨ ¨ ` ctµt

The best estimator for a contrast of interest can be obtained by substituting treatment group
sample means ȳi` for treatment population means µi in the contrast θ:

θ̂ “ c1Ȳ1` ` c2Ȳ2` ` ¨ ¨ ¨ ` ctȲt`

Example

Recall the binding fraction data that investigate binding fraction for several antibiotics using
n “ 20 bovine serum samples:

Antibiotic Binding Percentage Sample mean
Penicillin G 29.6 24.3 28.5 32.0 28.6
Tetracyclin 27.3 32.6 30.8 34.8 31.4

Streptomycin 5.8 6.2 11.0 8.3 7.8
Erythromycin 21.6 17.4 18.3 19 19.1

Chloramphenicol 29.2 32.8 25.0 24.2 27.8

Consider the pairwise contrast comparing penicillin (population) mean to Tetracyclin mean:

θ “ µ1 ´ µ2 “ p1qµ1 ` p´1qµ2 ` p0qµ3 ` p0qµ4 ` p0qµ5

Obtain a point estimator of θ.
Answers:

θ̂ “ µ̂1 ´ µ̂2 “ Ȳ1` ´ Ȳ2`

“ 28.6´ 31.4 “ ´2.8

Question: How good is this estimate? In other words, how much uncertainty associated with
the estimate?

We want to characterize the sampling distribution of θ̂. According to our model setup,
Yij follow normal distributions. θ̂ is a linear function of Yij, so that θ̂ follows a normal
distribution. We want to derive the mean and variance (the two sufficient statistics) to
characterize the normal distribution that θ̂ follows:

θ̂ „ N pθ, V arpθ̂qq

Derive expressions for the mean and the variance:
For the mean, we have

Epθ̂q “ Epµ̂1q ´ Epµ̂2q “ EpȲ1`q ´ EpȲ2`q

“ µ1 ´ µ2 “ θ

118



The variance follows
V arpθ̂q “ V arp

ÿ

j

cjȲj`q

“
ÿ

j

V arpcjȲj`q

“
ÿ

j

c2
jV arpȲj`q

“
ÿ

j

c2
j

nj
σ2

Therefore, the standard error:

SEpθ̂q “

b

V arpθ̂q “

g

f

f

eσ2

t
ÿ

j“1

c2
j

nj

which is estimated by

SE
Ź

pθ̂q “

g

f

f

eMSrEs
t
ÿ

j“1

c2
j

nj

To test H0 : θ “ θ0 (often 0) versus H1 : θ ‰ θ0, use t-test:

t “
θ̂ ´ θ0

SE
Ź

pθ̂q

H0
„ tN´t

At level α, the critical value for this test is tpN ´ t, α{2q and 100p1´αq% confidence interval
for a contrast θ “

ř

cjµj is given by

ÿ

cjȲj` ˘ tpN ´ t, α{2q

d

MSrEs
ÿ c2

j

nj

Multiple Comparisons

Let’s first review type I and type II errors.

H0 is True H0 is False

Don’t reject H0 Probability 1´ α Probability β

Reject H0 Probability α Probability 1´ β

• Type I error: rejection of a true null hypothesis (false positive).

• Type II error: failure to reject a false null hypothesis (false negative).
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• Type I error rate or significance level (α): the probability of rejecting the null hypoth-
esis given the null hypothesis is true.

• Type II error rate (β): the probability of failure to reject the null hypothesis given the
null hypothesis is false. 1´ β gives the power of a test.

Now, let’s consider all simple (pairwise) contrasts for the binding fraction data with t “ 5
antibiotic treatments of the form θ “ µi ´ µj.

• We have

ˆ

5
2

˙

“ 10 tests for significance each at level α “ 0.05

• what is the probability of committing at least one type I error?

1´ p1´ αq10

We need to consider the familywise error rate (fwe) when testing k contrasts:

fwe “ Prpat least one type I errorq

Methods for simultaneous inference for multiple contrasts include

• Bonferroni

• Scheffé

• Tukey

When the number of comparisons is in the hundreds or thousands (e.g. genome-wide as-
sociation studies), and FWE control is hopeless, more manageable type I error rate is the
False Discovery Rate (FDR):

FDR “ Ep
Falsely rejected null hypotheses

Number of rejected null hypotheses
q

Bonferroni correction

Suppose interest lies in exactly k contrasts. The Bonferroni adjustment to α controls fwe is

αbonferroni “
α

k

and simultaneous 95% confidence intervals for the k contrasts are given by

a1Ȳ1` ` ¨ ¨ ¨ ` atȲt` ˘ tp
αbonferroni

2
, νq

d

MSrEs
ÿ a2

j

nj

b1Ȳ1` ` ¨ ¨ ¨ ` btȲt` ˘ tp
αbonferroni

2
, νq

d

MSrEs
ÿ b2

j

nj

. . .

k1Ȳ1` ` ¨ ¨ ¨ ` ktȲt` ˘ tp
αbonferroni

2
, νq

d

MSrEs
ÿ k2

j

nj
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where ν denotes df for error.

Example: for the binding fraction example, consider only pairwise comparisons with Peni-
cillin:

θ1 “ µ1 ´ µ2, θ2 “ µ1 ´ µ3, θ3 “ µ1 ´ µ4, θ4 “ µ1 ´ µ5

We have k “ 4, αbonferroni “ 0.05{k “ 0.0125 and tp
αbonferroni

2
, 15q “ 2.84. Substitution leads

to

tp
αbonferroni

2
, 15q

d

MSrEs

ˆ

12

4
`
p´1q2

4
`

02

4
` ¨ ¨ ¨ `

02

4

˙

“2.84

c

p9.05q
2

4
“ 6.0

so that simultaneous 95% confidence intervals for θ1, θ2, θ3 and θ4 take the form

ȳ1` ´ ȳi` ˘ 6.0

Scheffé

Another method to construct simultaneous 95% confidence intervals for ALL contrasts,
use

t
ÿ

j“1

cj ȳj` ˘

g

f

f

ept´ 1qpF ˚qMSrEs
t
ÿ

j“1

c2
j

nj

where F ˚ “ F pα, t´ 1, N ´ tq. For a pairwise comparisons of means, µj and µk, this yields

ȳj` ´ ȳk` ˘
b

pt´ 1qpF ˚qMSrEsp1{nj ` 1{nkq

Using α “ 0.05, need to specify

• t (from the design)

• F ˚ (same critical value as for H0 : αi ” 0).

• MSrEs (from the data)

• ȳj`, ȳk`

• nj, nk (from the data)

For binding fraction data,

d

pt´ 1qpF ˚qMSrEsp
1

nj
`

1

nk
q “

c

p5´ 1qp3.06q9.05p
1

4
`

1

4
q “ 7.44

If any two sample means differ by more than 7.44, they differ significantly.
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Tukey

Tukey’s method is better than Scheffé’s method when making all pairwise comparisons in
balanced designs (n “ n1 “ n2 “ ¨ ¨ ¨ “ nt). It is conservative, controlling the experimentwise
error rate, and has a lower type II error rate in these cases than Scheffé. (It is more powerful.)

For simple contrasts of the form
θ “ µj ´ µk

to test
H0 : θ “ 0 vs H1 : θ ‰ 0

reject H0 at level α if

|θ̂| ą qpt, N ´ t, αq

c

MSrEs

n

where qpt, N´t, αq denotes α level studentized range for tmeans andN´t degrees of freedom,

the quantity qpt, N´t, αq
b

MSrEs
n

is referred to as Tukey’s honestly significant difference (HSD).

The studentized ranges can be calculated using R function qtukey(1´ α, t, N ´ t) .

Sample size computations for one-way ANOVA

Now consider the null hypothesis in a balanced experiment using one-way ANOVA to com-
pare t treatment means and α “ 0.05:

H0 : µ1 “ µ2 “ ¨ ¨ ¨ “ µt “ µ

versus the alternative
Ha : µi ‰ µj for some i ‰ j

Suppose that we intend to use a balanced design. How big does our sample size n1 “ n2 “

¨ ¨ ¨ “ nt “ n need to be?

The answer depends on lots of things, namely, σ2 and how many treatment groups t and
how much of a difference among the means we hope to be able to detect, and with how big
a probability.

Given α, µ1, . . . , µt and σ2, we can choose n to ensure a power of at least β (i.e. type II error
rate) using the noncentral F distribution.

Recall that the critical region for the statistic F “ MSrTrts{MSrEs is everything bigger
than F pα, t´ 1, N ´ tq “ F ˚.

The power of the F -test conducted using α “ 0.05 to reject H0 under this alternative is
given by

1´ β “ PrpMSrTrts{MSrEs ą F ˚;H1 is trueq. (4)

Let τi “ µi ´ µ for each treatment i so that

H0 : τ1 “ τ2 “ ¨ ¨ ¨ “ τt “ 0
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When some H1 is true and the sample size n is used in each group, it can be shown that the
F ratio has the noncentral F distribution with noncentrality parameter

γ “
t
ÿ

j“1

nj

´τj
σ

¯2

“ n
t
ÿ

j“1

´τj
σ

¯2

This is the parameterization for the F distribution used in both SAS and R.

One way to obtain an adequate sample size is trial and error. Software packages can be used
to get probabilities of the form 4 for various values of n.

Example

Suppose we want to test equal mean binding fractions among antibiotics against the alter-
native

H1 : µP “ µ` 3, µT “ µ` 3, µS “ µ´ 6, µE “ µ, µC “ µ

so that
τ1 “ τ2 “ 3, τ3 “ ´6, τ4 “ τ5 “ 0.

Assume σ “ 3 (is it arbitrary? any idea of how to guess?) and we need to use α “ 0.05.
The noncentrality parameter is given by

γ “ nrp
3

3
q
2
` p

3

3
q
2
` p
´6

3
q
2
s

The α “ 0.05 critical value for H0 is given by

F ˚ “ F p5´ 1, 5n´ 5, 0.05q.

We need the area to the right of F ˚ for the noncentral F distribution with degrees of freedom
4 and 5pn ´ 1q and noncentrality parameter γ “ 6n to be greater or equal to the desired
power level of 1´ β “ 0.8.

We will revisit this example in the lab session on Friday.
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31 Lecture 31: April 20

Last time

• Linear contrasts of means

• Sampling distribution of linear contrasts

• Multiple comparisons

• Sample size computations for one-way ANOVA

Today

• Lack of fit test

• Theoretical background of linear models

Additional reference

Course notes by Dr. Hua Zhou
“A Primer on Linear Models” by Dr. John F. Monahan

Lack-of-fit test

Hiking example: completely randomized experiment involving alpine meadows in the White
Mountains of New Hampshire. N “ 20 lanes of dimension 0.5m ˆ 1.5m randomized to 5
trampling treatments:

i: trt group x: Number of passes yij: Height (cm)

1 0 20.7 15.9 17.8 17.6

2 25 12.9 13.4 12.7 9.0

3 75 11.8 12.6 11.4 12.1

4 200 7.6 9.5 9.9 9.0

5 500 7.8 9.0 8.5 6.7

Two models for mean plant height:

SLR model: µpxq “ β0 ` β1x

one-factor ANOVA model: µij “ µ` αi

When the t treatments have an interval scale, the SLR model, and all polynomials of degree
p ď t´ 2 (why?), are nested in one-factor ANOVA model with t treatment means.
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Answer:
For t levels, there are t ´ 1 degrees of freedom. A polynomial model of degree p has p ` 1
number of parameters (in other words, takes p` 1 degrees of freedom).

F-ratio for lack-of-fit test

To test for lack-of-fit of a polynomial (reduced) model of degree p, use extra sum-of-squares
F -ratio on t´ 1´ p and N ´ t df:

F “
SSrlack of fits{pt´ 1´ pq

MSrpure errors

where
MSrpure errors “MSrEsfull

and
SSrlack-of-fits “ SSrTrts ´ SSrRegspoly

“ SSrEspoly ´ SSrEsfull

What is the SSrlack of fits for the meadows data? In a simple linear (p “ 1) model for the
meadows data,

SSrlack-of-fits “ 243.163´ 141.295 “ 101.867 on t´ 1´ p “ 3 df

and the sum of squares for the full model is SSrEsfull “ 30.93 that leads to

F “
101.867{3

30.93{15
«

34

2.1
“ 16.5

(highly significant since F p0.01, 3, 15q “ 5.42.) ñ model misspecified: SLR model suffers
from lack of fit.

Next step: either go with the one-factor ANOVA model or specify some other model, such
as quadratic.

Linear Models in the matrix form

Recall the matrix form of the linear model

Y
nˆ1

“ X
nˆp

β
pˆ1
` ε

nˆ1

Simple linear regression model

»

—

—

—

–

y1

y2
...
yn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 x1

1 x2
...

...
1 xn

fi

ffi

ffi

ffi

fl

„

β0

β1



`

»

—

—

—

–

ε1
ε2
...
εn

fi

ffi

ffi

ffi

fl

125



Multiple linear regression model

»

—

—

—

–

y1

y2
...
yn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 x11 . . . x1,p´1

1 x21 . . . x2,p´1
...

...
...

1 xn1 . . . xn,p´1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

β0

β1
...

βp´1

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

ε1
ε2
...
εn

fi

ffi

ffi

ffi

fl

One-way ANOVA model

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

y11
...

y1,n1

y21
...

y2,n2

...
ya,1

...
ya,na

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1n1 1n1

1n2 1n2

...
. . .

1na 1na

fi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

µ
α1

α2
...
αa

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ε11
...

ε1,n1

ε21
...

ε2,n2

...
εa,1

...
εa,na

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Two-way ANOVA model without interaction Model yijk “ µ ` αi ` βj ` εijk, i “ 1, . . . , a (a
levels in factor 1), j “ 1, . . . , b (b levels in factor 2), and k “ 1, . . . , nij (nij observations in
the pi, jq-th cell). In total we have n “

ř

i,j nij observations and p “ a ` b ` 1 parameters.
For simplicity, we consider the case without replicates, i.e., nij “ 1 and only write out Xβ.
Note adding more replicates to each cell does not change the rank of X.

Epyq “ Xβ “

»

—

—

—

–

1b 1b Ib
1b 1b Ib
...

. . .
...

1b 1b Ib

fi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

–

µ
α1

α2
...
αa
β1
...
βb

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Two-way ANOVA with interaction Model yijk “ µ`αi` βj ` γij ` εijk, i “ 1, . . . , a (a levels
in factor 1), j “ 1, . . . , b (b levels in factor 2), and k “ 1, . . . , nij (nij observations in the
pi, jq-th cell). In total we have n “

ř

i,j nij observations and p “ 1` a` b` ab parameters.
For simplicity, we consider the case without replicates, i.e., nij “ 1 and only write out Xβ.
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Note adding more replicates to each cell does not change the rank of X.

Epyq “ Xβ “

»

—

—

—

–

1b 1b Ib Ib
1b 1b Ib Ib
...

. . .
...

. . .

1b 1b Ib Ib

fi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

µ
α1

α2
...
αa
β1
...
βb
γ11
...
...
γab

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

For all the above models, we have the most general assumption over the error term, i.e. ε „
N p0, σ2Iq.

Mixed effects models For mixed effects models, we generally have

y “ Xb` Zu` e

• X P Rnˆp is a design matrix for fixed-effects b P Rp

• Z P Rnˆq is a design matrix for random-effects u P Rq

• The most general assumption is e „ N p0n,Rq, u „ N p0q,Gq, and e is independent of
u.

In many applications, e „ N p0n, σ2Inq and

Zu “ pZ1, . . . ,Zmq

¨

˚

˝

u1
...

um

˛

‹

‚

“ Z1u1 ` ¨ ¨ ¨ ` Zmum,

where ui „ N p0qi , σ2
i Iqiq,

řm
i“1 qi “ q. e and ui, i “ 1, . . . ,m, are jointly independent. Then

the covariance of responses y

Vpσ2, σ2
1, . . . , σ

2
mq “ σ2I`

m
ÿ

i“1

σ2
iZiZ

T
i

Linear equations and generalized inverse

For the linear model
Y
nˆ1

“ X
nˆp

b
pˆ1
` e

nˆ1
,
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we obtain the least square estimator by minimize the objective function Qpbq “
n
ř

i“1

e2
i “

pY ´XbqT pY ´Xbq. By taking derivative with respect to b and setting it to zero, we get

ˆ

BQ

Bb

˙T

“

ˆ

BQ

Bb1

,
BQ

Bb2

, . . . ,
BQ

Bbp

˙T

“

«

B
`

YTY ´ 2YTXb` bTXTXb
˘

Bb

ffT

“ ´2XTY`2XTXb

where we used the fact that for constant vector a P Rpˆ1, constant matrix A P Rpˆp and
x P Rpˆ1, we have the two derivatives:

1. BaTx
Bx

“ aT

2. BxTAx
Bx

“ xT pA`AT q

By setting
`

BQ
Bb

˘T
“ 0pˆ1, we get the Normal equations

XTXb “ XTY

Consistency

Assume A P Rmˆn

Definition: The linear system Ax “ c is consistent if there exists an x˚ such that Ax˚ “ c.

• If A is square and A´1 exists, then x “ A´1c.

• Proposition (g1): If Ax “ c is consistent, and if G is any matrix such that A
mˆn

G
nˆm

A
mˆn

“

A
mˆn

, then xψ “ Gc is a solution to Ax “ c.

Proof: Let x˚ satisfy Ax˚ “ c. Now consider Axψ “ AGc “ AGAx˚ “ Ax˚ “ c

• A matrix G satisfying AGA “ A is a generalized inverse of A with notation A´.

• If A is square and A´1 exists, then A´ “ A´1 is unique.

The set of all solutions to Ax “ c

Suppose that Ax “ c is consistent. Then x˚ is a solution to Ax “ c if and only if x˚ “
A´c` pI´A´Aqz for some z and A´.
Proof:

1. “If part”: By proposition (g1) x` “ A´c is a solution. So if x˚ “ A´c` pI´A´Aqz,
then Ax˚ “ Ax` ` pA´AA´Aqz “ c.

2. “Only if part:” If Ax˚ “ c, then x˚ “ A´c ` x˚ ´ A´c “ A´c ` x˚ ´ A´Ax˚ “
A´c` pI´A´Aqx˚

Moore-Penrose inverse

Assume A P Rmˆn

• The Moore-Penrose inverse of A is a matrix A` P Rnˆm with the following properties
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1. AA`A “ A (Generalized inverse, g1 inverse, or inner pseudo-inverse)

2. A`AA` “ A`. (outer pseudo-inverse. Any g1 inverse that satisfies this condition
is called a g2 inverse, or reflexive generalized inverse)

3. A`A is symmetric

4. AA` is symmetric

• A` exists and is unique for any matrix A.

• In practice, the Moore-Penrose inverse A` is easily computed from the singular value
decomposition of A.

• pA´qT is a generalized inverse of AT

General form of the least squares solution

Now we have derived the general form of the least squares solution with generalized inverse.

b̂ “ pXTXq´XTy ` rIp ´ pX
TXq´XTXsq

where q P Rp is arbitrary.

Positive (semi)definite matrix

Assume A P Rnˆn is symmetric (i.e. A “ AT )

• A real symmetric matrix A P Rnˆn is positive semi-definite (or nonnegative definite,

or p.s.d.) if xTAx ě 0 for all x. Notation A ľp.s.d. 0

• E.g., the Gramian matrix XTX is p.s.d.

• We write A ľp.s.d. B means A´B ľp.s.d. 0

• Cholesky decomposition. Each positive semidefinite matrix A P Rnˆn can be factorized

as A “ LLT for some lower triangular matrix L P Rnˆn with nonnegative diagonal
entries.

• A P Rnˆn is positive semidefinite if and only if A is a covariance matrix of a random
vector.
Proof:

1. “If part”: Let A “ Covpxq for some random vector x. Then for any constant c
of same length as x, cTAc “ cTCovpxqc “ VarpcTxq ě 0.

2. “Only if part”: Let A “ LLT be the Cholesky decomposition and x a vector of
iid standard normal. Then Lx has covariance matrix LCovpxqLT “ LInL

T “ A.
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Estimable function

Assume the linear mean model: Y “ Xb` e, Epeq “ 0. One main interest is estimation of
the underlying parameter b. Can b be estimated or what functions of b can be estimated?

• A parametric function Λb, Λ P Rmˆp is said to be (linearly) estimable if there exists
an affinely unbiased estimator of Λb for all b P Rp. That is there exist constants
A P Rmˆn and c P Rm such that EpAy ` cq “ Λb for all b.

• Theorem: Assuming the linear mean model, the parametric function Λb is (linearly)
estimable if and only if CpΛq Ă CpXT q, or equivalently N pXq Ă N pΛq.
“Λb is estimable ðñ the row space of Λ is contained in the row space of X ðñ

the null space of X is contained in the null space of Λ.”
Proof: Let Ay ` c be an affine estimator of Λb. Unbiasedness requires

EpAy ` cq “ AEpyq ` c “ AXb` c “ Λb

for all b P Rp. Taking the special value b “ 0 shows that c “ 0. Thus pAX´Λqb “ 0
for all b. Taking special values b “ ei shows that columns of the matrix AX´Λ are
all zeros. This means AX “ Λ. Therefore, the matrix A exists if and only if rows of
Λ are linear combinations of the rows of X, that is, if and only if CpΛq Ă CpXT q

• λTb is linearly estimable if and only if λTb is a linear combination of the components
in µY “ EpYq

– the ‘if’ part: λTb “ aTµY for some a P Rnˆ1, then by definition, λTb is estimable.

– the ‘only if’ part: if λTb is estimable, then λT “ aTX for some a P Rnˆ1. Then
λTb “ aTXb “ aTEpYq

• Corollary: Xb is estimable.
“Expected value of any observation Epyiq and their linear combinations are estimable.”

• Corollary: If X has full column rank, then any linear combinations of b are estimable.

• If Λb is (linearly) estimable, then its least squares estimator Λb̂ is invariant to the
choice of the least squares solution b̂.
Proof: Let b̂1, b̂2 be two least squares solutions. Then b̂1´ b̂2 P N pXTXq “ N pXq Ă
N pΛq. Hence, Λpb̂1 ´ b̂2q “ 0, that is Λb̂1 “ Λb̂2

• The least squares estimator Λb̂ is a linearly unbiased estimator of Λb. Proof: The
least squares solution takes the general form

b̂ “ pXTXq´XTy ` rIp ´ pX
TXq´XTXsq

where q P Rp is arbitrary. Thus the least squares estimator

Λb̂ “ ΛpXTXq´XTy `ΛrIp ´ pX
TXq´XTXsq

“ ΛpXTXq´XTy
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is a linear function of y. Now

EpΛb̂q “ ΛpXTXq´XTEpyq

“ ΛpXTXq´XTXb

“ Λb

since XTXpXTXq´ is a projection onto CpXTXq “ CpXT q and CpΛT q Ă CpXT q. There-
fore the least squares estimator is unbiased.

Estimability example: One-way ANOVA model

Consider the following example with one-way ANOVA model.

Yij “ µ` αi ` εij i “ 1, 2, 3, j “ 1, 2

In matrix form:
»

—

—

—

—

—

—

–

Y11

Y21

Y31

Y12

Y22

Y32

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

1 1 0 0
1 0 1 0
1 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

–

µ
α1

α2

α3

fi

ffi

ffi

fl

`

»

—

—

—

—

—

—

–

ε11

ε21

ε31

ε12

ε22

ε32

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Note: replication doesn’t help with estimability. What functions of λTb are estimable?

Solutions: µY “

»

—

—

—

—

—

—

–

µ` α1

µ` α2

µ` α3

µ` α1

µ` α2

µ` α3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

„

µY1
µY2



.

λTb “ aTEpYq for some a P R6ˆ1 if an only if λTb “ aTµY1 for some a “

»

–

a1

a2

a3

fi

fl.

Let λ “

»

—

—

–

λ0

λ1

λ2

λ3

fi

ffi

ffi

fl

. We have

λ0µ` λ1α1 ` λ2α2 ` λ3α3 “ a1pµ` α1q ` a2pµ` α2q ` a3pµ` α3q

“ pa1 ` a2 ` a3qµ` a1α1 ` a2α2 ` a3α3

$

’

’

&

’

’

%

λ0 “ a1 ` a2 ` a3

λ1 “ a1

λ2 “ a2

λ3 “ a3

ùñ

$

’

’

&

’

’

%

a1 “ λ1

a2 “ λ2

a3 “ λ3

λ0 “ λ1 ` λ2 ` λ3

In other words, λTb is linearly estimable if and only if λ0 “ λ1 ` λ2 ` λ3.
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Idempotent matrix

Assume A P Rnˆn.

• A matrix A P Rnˆn is idempotent if and only if A2p“ AAq “ A.

• Any idempotent matrix A is a generalized inverse of itself.

• The only idempotent matrix of full rank is I.
Proof. Since A has full rank, the inverse A´1 exists. Then A “ A´1AA “ A´1A “

I.Interpretation: all idempotent matrices are singular except for the identity matrix.

• A is idempotent if and only if AT is idempotent if and only if In ´A is idempotent.

• For a general matrix A P Rmˆn, the matrices A´A and AA´ are idempotent and

rankpAq “ rankpA´Aq “ rankpAA´
q

rankpIn ´A´Aq “ n´ rankpAq

rankpIm ´AA´
q “ m´ rankpAq.
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33 Lecture 33: April 25

Last time

• Lack of fit test

• Theoretical background of linear models

Today

• Theoretical background of linear models

• Course evaluation started (current: 2/17)

Additional reference

Course notes by Dr. Hua Zhou
“A Primer on Linear Models” by Dr. John F. Monahan

Estimable function

Assume the linear mean model: Y “ Xb` e, Epeq “ 0. One main interest is estimation of
the underlying parameter b. Can b be estimated or what functions of b can be estimated?

• A parametric function Λb, Λ P Rmˆp is said to be (linearly) estimable if there exists
an affinely unbiased estimator of Λb for all b P Rp. That is there exist constants
A P Rmˆn and c P Rm such that EpAy ` cq “ Λb for all b.

• Theorem: Assuming the linear mean model, the parametric function Λb is (linearly)
estimable if and only if CpΛq Ă CpXT q, or equivalently N pXq Ă N pΛq.
“Λb is estimable ðñ the row space of Λ is contained in the row space of X ðñ

the null space of X is contained in the null space of Λ.”
Proof: Let Ay ` c be an affine estimator of Λb. Unbiasedness requires

EpAy ` cq “ AEpyq ` c “ AXb` c “ Λb

for all b P Rp. Taking the special value b “ 0 shows that c “ 0. Thus pAX´Λqb “ 0
for all b. Taking special values b “ ei shows that columns of the matrix AX´Λ are
all zeros. This means AX “ Λ. Therefore, the matrix A exists if and only if rows of
Λ are linear combinations of the rows of X, that is, if and only if CpΛq Ă CpXT q

• λTb is linearly estimable if and only if λTb is a linear combination of the components
in µY “ EpYq

– the ‘if’ part: λTb “ aTµY for some a P Rnˆ1, then by definition, λTb is estimable.

– the ‘only if’ part: if λTb is estimable, then λT “ aTX for some a P Rnˆ1. Then
λTb “ aTXb “ aTEpYq
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• Corollary: Xb is estimable.
“Expected value of any observation Epyiq and their linear combinations are estimable.”

• Corollary: If X has full column rank, then any linear combinations of b are estimable.

• If Λb is (linearly) estimable, then its least squares estimator Λb̂ is invariant to the
choice of the least squares solution b̂.
Proof: Let b̂1, b̂2 be two least squares solutions. Then b̂1´ b̂2 P N pXTXq “ N pXq Ă
N pΛq. Hence, Λpb̂1 ´ b̂2q “ 0, that is Λb̂1 “ Λb̂2

• The least squares estimator Λb̂ is a linearly unbiased estimator of Λb.
Proof: The least squares solution takes the general form

b̂ “ pXTXq´XTy ` rIp ´ pX
TXq´XTXsq

where q P Rp is arbitrary. Thus the least squares estimator

Λb̂ “ ΛpXTXq´XTy `ΛrIp ´ pX
TXq´XTXsq

“ ΛpXTXq´XTy

is a linear function of y. Now

EpΛb̂q “ ΛpXTXq´XTEpyq

“ ΛpXTXq´XTXb

“ Λb

since XTXpXTXq´ is a projection onto CpXTXq “ CpXT q and CpΛq Ă CpXT q. There-
fore the least squares estimator is unbiased.

Estimability example: One-way ANOVA model

Consider the following example with one-way ANOVA model.

Yij “ µ` αi ` εij i “ 1, 2, 3, j “ 1, 2

In matrix form:
»

—

—

—

—

—

—

–

Y11

Y21

Y31

Y12

Y22

Y32

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

1 1 0 0
1 0 1 0
1 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

–

µ
α1

α2

α3

fi

ffi

ffi

fl

`

»

—

—

—

—

—

—

–

ε11

ε21

ε31

ε12

ε22

ε32

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Note: replication doesn’t help with estimability. What functions of λTb are estimable?

Solutions: µY “

»

—

—

—

—

—

—

–

µ` α1

µ` α2

µ` α3

µ` α1

µ` α2

µ` α3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

„

µY1
µY2



.
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λTb “ aTEpYq for some a P R6ˆ1 if an only if λTb “ aTµY1 for some a “

»

–

a1

a2

a3

fi

fl.

Let λ “

»

—

—

–

λ0

λ1

λ2

λ3

fi

ffi

ffi

fl

. We have

λ0µ` λ1α1 ` λ2α2 ` λ3α3 “ a1pµ` α1q ` a2pµ` α2q ` a3pµ` α3q

“ pa1 ` a2 ` a3qµ` a1α1 ` a2α2 ` a3α3

$

’

’

&

’

’

%

λ0 “ a1 ` a2 ` a3

λ1 “ a1

λ2 “ a2

λ3 “ a3

ùñ

$

’

’

&

’

’

%

a1 “ λ1

a2 “ λ2

a3 “ λ3

λ0 “ λ1 ` λ2 ` λ3

In other words, λTb is linearly estimable if and only if λ0 “ λ1 ` λ2 ` λ3.

Idempotent matrix

Assume A P Rnˆn.

• A matrix A P Rnˆn is idempotent if and only if A2p“ AAq “ A.

• Any idempotent matrix A is a generalized inverse of itself.

• The only idempotent matrix of full rank is I.
Proof. Since A has full rank, the inverse A´1 exists. Then A “ A´1AA “ A´1A “

I.Interpretation: all idempotent matrices are singular except for the identity matrix.

• A is idempotent if and only if AT is idempotent if and only if In ´A is idempotent.

• For a general matrix A P Rmˆn, the matrices A´A and AA´ are idempotent and

rankpAq “ rankpA´Aq “ rankpAA´
q

rankpIn ´A´Aq “ n´ rankpAq

rankpIm ´AA´
q “ m´ rankpAq.

Projection

• A matrix P P Rmˆn is a projection onto a vector space V if and only if

1. P is idempotent

2. Px P V for any x P Rn

3. Pz “ z for any z P V .

• Any idempotent matrix P is a projection onto its own column space CpPq.
Proof: Property (1) is free. Property (2) is trivial since Px P CpPq for any x. For
property (3), note PP “ P says Ppi “ pi for each column pi of P. Therefore, Pz “ z
for any z P CpPq.
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• AA´ is a projection onto the column space CpAq.
Proof:

1. Idempotent: AA´AA´
“ AA´ by definition of generalized inverse.

2. AA´v “ ApA´vq P CpAq

3. Let z P CpAq, then z “ Ac for some c. Therefore, AA´z “ AA´Ac “ Ac “ z

• Proposition: Let X,A,B be matrices, then XTXA “ XTXB if and only if XA “ XB.
Proof:

– ‘if’ part: XA “ XB ùñ XTXA “ XTXB

– ‘only if’ part: if XTXA “ XTXB, then XTXA´XTXB “ 0 ùñ XTXpA´Bq “
0 ùñ pA´BqTXTXpA´Bq “ 0 ùñ pXA´XBqT pXA´XBq “ 0 ùñ

XA´XB “ 0

• The projection matrix
PX
nˆn

“ X
nˆp
pXTXq´

pˆp

XT

pˆn

is unique.
Proof: Let G1 and G2 be two generalized inverse of XTX. Define PX,1 “ XG1X

T and
PX,2 “ XG2X

T .
XTXG1X

TX “ XTX “ XTXG2X
TX

By the proposition above, we have

XG1X
TX “ XG2X

TX

and taking transpose on both sides, we get XTXpXG1q
T “ XTXpXG2q

T . Applying
the proposition again, we get

XpXG1q
T
“ XpXG2q

T

which is
XG1X

T
“ XG2X

T .

We showed that PX,1 “ PX,2 is unique.

• Start with PXX “ X, we have XpXTXq´XTX “ X. Therefore, pXTXq´XT is a
generalized inverse of X which is sometimes called the least-squares inverse. And PX

is a projection onto CpXq.

• PX
nˆn

X
nˆp

“ X
nˆp

Proof:
XTXpXTXq´XTX “ XTXI

with the above proposition, we have

XpXTXq´XTX “ X

which is PXX “ X.
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• Predicted values Ŷ “ Xb̂ls are invariant to choice of solution to the normal equation,
where

b̂ls “ pX
TXq´XTY

is not necessarily unique.
Proof:

1. Ŷ “ Xb̂ls “ PXY and apply the uniqueness of PX

2. Given b̂1 and b̂2 are two solutions to the Nomral Equations, then

b̂2 “ b̂1 `
 

I´ pXTXq´XTX
(

z

for some vector z. Then Xb̂2 “ Xb̂1 `X
 

I´ pXTXq´XTX
(

z “ Xb̂1

Recall, multicollinearity doesn’t affect prediction.

Geometry of least squares

• P2
X “ PX and Ŷ “ PXY is unique.

• Recall the column space of X is CpXq “
"

y
nˆ1

: y “ X b
pˆ1

for some b

*

• The vector in CpXq that is closest in terms of squared norm (L2 norm: ||a´ b||2 “
b

pa´ bqT pa´ bq) to Y is given by Ŷ “ Xb̂ls “ PXY.

Proof: b̂ls minimizes ||Y ´Xb||2 over all b P Rp.

• Ŷ P CpXq

• ê
nˆ1

“ Y ´ Ŷ “ pI ´ PXqY P N pXT q where N pXT q “

"

v
nˆ1

: XTv “ 0

*

is the

null space of XT .
Proof: For any y P CpXq, such that y “ Xb for some b.

êTy “ YT
pI´PXqXb

“ YT
pX´PXXqb

“ 0

Therefore ê is orthogonal to every vector in CpXq.
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34 Lecture 34: April 27

Last time

• Theoretical background of linear model

Today

• Course evaluation (7/17)

• Multivariate Normal and Cochran’s theorem

• Bootstrap

• Logistic Regression (JF Chapter 14)

Additional reference

“Essential Statistical Inference Theory and Methods” by Dr. Dennis D. Boos and Dr. L. A.
Stefanski.
Dr. Hua Zhou’s Computational Statistics notes.

Normal distribution in scaler case

• A random variable Z has a standard normal distribution, denoted Z „ N p0, 1q, if

FZptq “ PrpZ ď tq “

ż t

´8

1
?

2π
e´z

2{2dz,

or equivalently Z has density

fZpzq “
1
?

2π
e´z

2{2, ´8 ă z ă 8

or equivalently, Z has moment generating function (mgf)

mZptq “ EpetZq “ et
2{2, ´8 ă z ă 8

• Non-standard normal random variable

– Definition 1: A random variable X has normal distribution with mean µ and
variance σ2, denoted X „ N pµ, σ2q, if

X “ µ` σZ

where Z „ N p0, 1q

– Definition 2: X „ N pµ, σ2q if

mXptq “ EpetXq “ etµ`σ
2t2{2, ´8 ă t ă 8

– In both definitions, σ2 “ 0 is allowed. If σ2 ą 0, it has a density

fXpxq “
1

?
2πσ

e´px´µq
2{2σ2

, ´8 ă x ă 8
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Multivariate normal distribution

– The standard multivariate normal is a vector of independent standard normals,
denoted Z „ N p0p, Ipq. The joint density is

fZpzq “
1

p2πqp{2
e´

řp
i“1 z

2
i {2.

The mgf is

mZptq “
p
ź

i“1

mZipt1q “
p
ź

i“1

et
2
i {2 “ et

T t{2.

– Consider the affine transformation X “ µ ` AZ where Z „ N p0p, Ipq. X has
mean and variance

EpXq “ µ, VarpXq “ AAT

and the moment generating function is

mXptq “ Epet
T pµ`AZq

q “ et
TµEpet

TAZ
q “ et

Tµ`tTAAT t{2.

– X P Rp has a multivariate normal distribution with mean µ P Rp and covariance
V P Rpˆp,V ľp.s.d. 0, denoted X „ N pµ,Vq, if its mgf takes the form

mXptq “ et
Tµ`tTVT t{2, t P Rp

– if X „ N pµ,Vq and V is non-singular, then

∗ V “ AAT for some non-singular A

∗ A´1pX´ µq „ N p0p, Ipq

∗ The density of X is

fXpxq “
1

p2πqp{2|V|1{2
e´px´µq

TV´1px´µq{2.

– (Any affine transform of normal is normal) If X P Rp,X „ N pµ,Vq and Y “ a`BX,
where a P Rq and B P Rqˆp, then Y „ N pa`Bµ,BVBT

q.

– (Marginal of normal is normal) If X P Rp,X „ N pµ,Vq, then any subvector of
X is normal too.

– A convenient fact about normal random variables/vectors is that zero correla-
tion/covariance implies independence.
If X „ N pµ,Vq and is partitioned as

X “

»

—

–

X1
...

Xm

fi

ffi

fl

, µ “

»

—

–

µ1
...

µm

fi

ffi

fl

, V “

»

—

–

V11 . . . V1m
...

...
Vm1 . . . Vmm

fi

ffi

fl
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then X1, . . . ,Xm are jointly independent if and only if Vij “ 0 for all i ‰ j.
Proof:
If X1, . . . ,Xm are jointly independent, then Vij “ CovpXi,Xjq “ EpXi´µiqpXj´

µjq
T “ EpXi ´ µiqEpXj ´ µjq

T “ 0pi0
T
pj
“ 0piˆpj .

Conversely, if Vij “ 0 for all i ‰ j, then the mgf of X “ pX1, . . . ,Xmq
T is

mXptq “ et
Tµ`tTVt{2

“ e
řm
i“1 ti

Tµi`
řm
i“1 ti

TViiti{2

“ mX1pt1q . . .mXmptmq

Therefore X1, . . . ,Xm are jointly independent.

Independence and Cochran’s theorem

• (Independence between two linear forms of a multivariate normal) Let X „ N pµ,Vq,
Y1 “ a1 `B1X and Y2 “ a2 `B2X. Then Y1 and Y2 are independent if and only if
B1VBT

2 “ 0.
Proof: Note CovpY1,Y2q “ B1CovpXqBT

2 “ B1VBT
2 .

• Consider the normal linear model y „ N pXb, σ2Inq

– Using A “ p1{σ2qpI´PXq, we have

SSE{σ2
“ ||ε̂||22{σ

2
“ yTAy „ χ2

n´r,

where r “ rankpXq. Note the noncentrality parameter is

φ “
1

2
pXbqT p1{σ2

qpI´PXqpXbq “ 0 for all b.

– Using A “ p1{σ2qPX, we have

SSR{σ2
“ ||ŷ||22{σ

2
“ yTAy „ χ2

rpφq,

with the noncentrality parameter

φ “
1

2
pXbqT p1{σ2

qPXpXbq “
1

2σ2
||Xb||22.

– The joint distribution of ŷ and ε̂ is

„

ŷ
ε̂



“

„

PX

In ´PX



y „ N
ˆ„

Xb
0n



,

„

σ2PX 0
0 σ2pI´PXq

˙

.

So ŷ is independent of ε̂. Thus ||ŷ||22{σ
2 is independent of ||ε̂||22{σ

2 and

F “
||ŷ||22{σ

2{r

||ε̂||22{σ
2{pn´ rq

„ Fr,n´rp
1

2σ2
||Xb||22q.
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• (Independence between linear and quadratic forms of a multivariate normal) Let X „

N pµ,Vq. Let A be symmetric with rank s. Then BX and XTAX are independent if
BVA “ 0.
Proof: By eigen-decomposition, A “ Q1Λ1Q

T
1 , where QT

1 Q1 “ Is and Λ1 P Rsˆs is
non-singular. Consider the joint distribution

„

BX
QT

1 X



„ N
ˆ„

Bµ
QT

1 µ



,

„

BVBT BVQ1

QT
1 VBT QT

1 VQ1

˙

By hypothesis
BVA “ BVQ1Λ1Q

T
1 “ 0

Post-multiplying both sides by Q1Λ
´1
1 gives BVQ1 “ 0, which implies BX is inde-

pendent of both QT
1 X and XTQ1Λ1Q1X “ XTAX.

• (Independence between two quadratic forms of a multivariate normal) Let X „ N pµ,Vq,
A be symmetric with rank r, and B be symmetric with rank s. If BVA “ 0, then
XTAX and XTBX are independent.
Proof: Again, by eigen-decomposition.

A “ Q1Λ
´1
1 Q1, where Q1 P Rpˆr,Λ1 P Rrˆr nonsingular

B “ Q2Λ
´1
2 Q2, where Q2 P Rpˆs,Λ2 P Rsˆs nonsingular

Now consider the joint distribution

„

QT
1 X

QT
2 X



„ N
ˆ„

QT
1 µ

QT
2 µ



,

„

QT
1 VQ2 QT

1 VQ2

QT
2 VQ1 QT

2 VQ2

˙

By hypothesis
BVA “ Q2Λ2Q

T
2 VQ1Λ1Q

T
1 “ 0

Pre-multiplying both sides by Λ´1
2 QT

2 and then post-multiplying both sides by Q1Λ
´1
1

gives
QT

2 VQ1 “ 0.

Therefore QT
1 X is independent of QT

2 X, which implies XTAX “ XTQ1Λ
´1
1 Q1 is

independent of XTBX “ XTQ2Λ
´1
2 Q2.

• (Cochran’s theorem) Let y „ N pµ, σ2Inq and Ai, i “ 1, . . . , k be symmetric idempo-
tent matrix with rank si. If

řk
i“1 Ai “ In, then p1{σ2qyTAiy are independent χ2

si
pφiq,

with φi “
1

2σ2µ
TAiµ and

řk
i“1 si “ n.

Proof: Since Ai is symmetric and idempotent with rank si, Ai “ QiQ
T
i with Qi P Rnˆsi

and QT
i Qi “ Isi . Define Q “ pQ1, . . . ,Qkq P Rnˆ

řk
i“1 si . Note

QTQ “ Iřk
i“1 si

QQT
“

k
ÿ

i“1

QiQ
T
i “

k
ÿ

i“1

Ai “ In
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Now

QTy “

»

—

–

QT
1 y
...

QT
k y

fi

ffi

fl

„ N

¨

˚

˝

»

—

–

QT
1 µ
...

QT
kµ

fi

ffi

fl

, σ2In

˛

‹

‚

implying that QT
i y „ N pQT

i µ, σ
2Isiq are jointly independent. Therefore p1{σ2qyTAiy “

p1{σ2q||QT
i y||22 „ χ2

si
p 1

2σ2µ
TAiµq are jointly independent.

• Application to the one-way ANOVA: yij “ µ`αi` εij. We have the classical ANOVA
table

Source df Projection SS Noncentrality

Mean 1 P1 SSM “ nȳ2 1
2σ2npµ` ᾱq

2

Group a´ 1 PX ´P1 SSA “
řa
i“1 niȳ

2
i ´ nȳ

2 1
2σ2

řa
i“1 nipαi ´ ᾱq

2

Error n´ a I´PX SSE “
řa
i“1

řni
j“1pyij ´ ȳiq

2 0

Total n I SST “
ř

i

ř

j y
2
ij

1
σ2

řa
i“1 nipµ` αiq

2

Bootstrap

We follow JF Chapter 21 to discuss the version of nonparametric bootstrap here. The term
bootstrapping, coined by Efron (1979), refers to using the sample to learn about the sampling
distribution of a statistic without reference to external assumptions – as in “pulling oneself
up by one’s bootstraps.”

Bootstrapping offers a number of advantages:

• The bootstrap is quite general, although there are some cases in which it fails.

• Because it does not require distributional assumptions (such as normally distributed
errors), the bootstrap can provide more accurate inferences when the data are not well
behaved or when the sample size is small.

• It is possible to apply the bootstrap to statistics with sampling distributions that are
difficult to derive, even asymptotically.

• It is relatively simple to apply the bootstrap to complex data collection plans.

Bootstrap standard errors

For simplicity, we start with an iid sample Y1, . . . , Yn with each Yi having distribution function
F , and a real parameter θ is estimated by θ̂. When necessary, we think of θ̂ as a function of
the sample, θ̂pY1, . . . , Ynq. The variance of θ̂ is then

VarF pθ̂q “

ż

!

θ̂py1, . . . , ynq ´ EF pθ̂q
)2

dF py1q . . . dF pynq,
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where

EF pθ̂q “

ż

θ̂py1, . . . , ynqdF py1q . . . dF pynq.

The nonparametric bootstrap estimate of Varpθ̂q is just to replace F by the empirical distri-
bution function Fnpyq “ n´1

řn
i“1 IpYi ď yq:

VarFnpθ̂q “

ż

!

θ̂py1, . . . , ynq ´ EFnpθ̂q
)2

dFnpy1q . . . dFnpynq,

Please refer to Chapter 11 of Boos and Stefanski for a complete discussion.

A practical bootstrapping procedure follows:

1. Create r number of bootstrap replications or pseudo-replicates – that is, for each boot-
strap sample (replicate) b “ 1, . . . , r, we randomly draw n observations tY ˚b1 , Y

˚
b2
, . . . , Y ˚bnu

with replacement from the original sample tY1, Y2, . . . , Ynu.

2. Obtain an estimate θ̂˚b of each bootstrap sample.

3. Use the distribution of θ̂˚b to estimate properties of the sampling distribution of θ̂.For

example, the sample standard deviation of θ̂˚b gives the bootstrap standard error esti-

mates of SE
Ź˚

pθ̂q.

Bootstrap example

We use the example in JF 21.1 for illustration. Imagine that we sample (fake) ten working,
married couples, determining in each case the husband’s and wife’s income, as recorded in
the table (JF table 21.3) below.

Observation husband’s Income Wife’s Income Difference Yi

1 34 28 6

2 24 27 -3

3 50 45 5

4 54 51 3

5 34 28 6

6 29 19 10

7 31 20 11

8 32 40 -8

9 40 33 7

10 34 25 9

143



A point estimate of this population mean difference µ is the sample mean,

Ȳ “

ř

Yi
n

“ 4.6

Elementary statistical theory tells us that the standard deviation of the sampling distribution
of sample means is SDpȲ q “ σ{

?
n, where σ is the population standard deviation of Y .

Because we do not know σ in most real applications, the usual estimator of σ is the sample
standard deviation

Ŝ “

d

ř

pYi ´ Ȳ q2

n´ 1

and we obtain the 95% confidence interval by

Ȳ ˘ tn´1,0.025
Ŝ
?
n

In the present case, Ŝ “ 5.948, SE
Ź

pȲ q “ 5.948{
?

10 “ 1.881, and t9,0.025 “ 2.262. The 95%
confidence interval for the population mean µ is therefore

4.6˘ 2.262ˆ 1.881 “ 4.6˘ 4.255

or equivalently,
0.345 ă µ ă 8.855

To illustrate the bootstrap procedure,

1. We can draw r “ 2000 bootstrap samples (using a computer), each of size n “ 10,
from the original data given in table 21.3.

2. We then calculate the mean Ȳ ˚b , with b “ 1, . . . , r for each bootstrap sample.

3. The bootstrap estimate of the standard error is then given by SE
Ź˚

pȲ ˚q “

c

řr
b“1pȲ

˚
b ´

¯̄Y ˚q
2

r´1

From the 2000 replicates that Dr. Fox drew, he obtained ¯̄Y ˚ “ 4.693 and SE
Ź

pȲ ˚q “ 1.750.
Both are quite close to the theoretical values (read JF 21.1 for a discussion over

a

n{n´ 1
for the differences in calculating the standard errors, which is often negligible, especially
when n is large).

Now, we can get a bootstrap estimate for the 100p1´ αq% confidence interval by using the
α{2 and p1´ α{2q quantiles of the bootstrap sampling distribution of θ̂˚b which means

1. We order θ̂˚b such that θ̂˚
p1q ď θ̂˚

p2q ď ¨ ¨ ¨ ď θ̂˚
prq.

2. Find the two quantiles θ̂˚
plowerq “ θ̂˚

pα{2ˆrq and θ̂˚
pupperq “ θ̂˚

pp1´α{2qˆrq

3. Construct the confidence interval by pθ̂˚
plowerq, θ̂

˚
pupperqq.
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In this case,
lower “ 2000p0.05{2q “ 50

upper “ 2000p1´ 0.05{2q “ 1950

Ȳ ˚p50q “ 0.7

Ȳ ˚p1950q “ 7.8

0.7 ă µ ă 7.8

Bias-corrected bootstrap intervals

We introduce the bias-corrected version of the above bootstrap intervals through two “cor-
rection factors” Z and A defined below:.

1. Calculate

Z ” Φ´1

«

řr
b“1 Ipθ̂

˚
b ă θ̂q

r

ff

where Φ´1p¨q is the inverse of the standard-normal distribution and
řr
b“1 Ipθ̂

˚
b ă θ̂q{r is

the proportion of bootstrap replicates below the estimate θ̂. If the bootstrap sampling
distribution is symmetric and if θ̂ is unbiased, then this proportion will be close to 0.5,
and the “correction factor” Z will be close to 0.

2. Let θ̂p´iq represent the value of θ̂ produced when ith observation is deleted from the

sample (known as the jackknife values of θ̂). There are n of these quantities. Let

θ̄ “
ř

θ̂p´iq{n. Then calculate

A ”

řn
i“1pθ̄ ´ θ̂p´iqq

3

6
”

řn
i“1pθ̄ ´ θ̂p´iqq

2
ı3{2

With the correction factors Z and A, compute

A1 ” Φ

„

Z `
Z ´ zα{2

1´ ApZ ´ zα{2q



A2 ” Φ

„

Z `
Z ` zα{2

1´ ApZ ` zα{2q



And the corrected interval is

θ̂˚plowerq ă θ ă θ̂˚pupperq

where lower˚ “ rA1 and upper˚ “ rA2 (rounding or interpolating as required).

When the correction factors Z and A are both 0, A1 “ Φp´zα{2q “ α{2 and A2 “ Φpzα{2q “
1´ α{2.

For the 2000 bootstrap samples that Dr. Fox drew, there are 926 bootstrapped means below
Ȳ “ 4.6, and so Z “ Φ´1p926{2000q “ ´0.09288. The Ȳp´iq are 4.444, 5.444, . . . , 4.111. And
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A “ ´0.05630. Using the correction factors Z and A,

A1 “ Φ

„

´0.09288`
´0.09288´ 1.96

1´ r´0.05630p´0.09288´ 1.96qs



“ Φp´2.414q “ 0.007889

A2 “ Φ

„

´0.09288`
´0.09288` 1.96

1´ r´0.05630p´0.09288` 1.96qs



“ Φp1.597q “ 0.9449

Multiplying by r, we have 2000ˆ 0.007889 « 16 and 2000ˆ 0.9449 « 1890, from which

Ȳ ˚p16q ă µ ă Ȳ ˚p1890q

´0.4 ă µ ă 7.3

Logistic regression

So far, we only considered cases where the response variable is continuous. Logistic regression
belongs in the family of Generalized Linear Model that can be used for analyzing binary
responses.

Motivation Let p be the probability of a specific outcome. We are interested in how this
probability is affected by the explanatory variables. A naive approach could be:

p “ β0 ` β1x1 ` β2x2 ` ε

Problem p must be between 0 and 1.

Solution Model log odds of p (i.e. logit of p) which are defined as

odds “
p

1´ p
P r0,8q

logit “ logp
p

1´ p
q P p´8,8q

This forms the logistic regression

logitppq “ logp
p

1´ p
q “ β0 ` β1x1 ` β2x2

Note that

1. Increase in log odds ðñ increase in p.
Decrease in log odds ðñ decrease in p.

2. No ε in logistic regression because we observe a binary outcome yi, not p itself.
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The density
fpyi|piq “ pyii p1´ piq

1´yi

“ eyi logppiq`p1´yiq logp1´piq

“ e
yi logp

pi
1´pi

q`logp1´piq

where

Epyiq “ pi “
ex

T
i β

1` ex
T
i β

pmean function, inverse link functionq

xTi β “ logp
pi

1´ pi
q plogit link functionq

We obtain parameter estimates by maximum likelihood. Read page 131 - page 133 of Dr. Hua
Zhou’s Computational Statistics notes (link) for algorithms to find these MLE (maximum
likelihood estimates).
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