HW4

1 Independence of linear and quadratic terms

In HW3 Q3, we consider a hypothesis concerning a contrast of group means in a one-way ANOVA:

$$
H_{0}: c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{m} \mu_{m}=0
$$

where $c_{1}+c_{2}+\cdots+c_{m}=0$. Define the sample value of the contrast as

$$
C \equiv c_{1} \bar{Y}_{1}+c_{2} \bar{Y}_{2}+\cdots+c_{m} \bar{Y}_{m}
$$

and let

$$
C^{\prime 2} \equiv \frac{C^{2}}{\frac{c_{1}^{2}}{n_{1}}+\frac{c_{2}^{2}}{n_{2}}+\cdots+\frac{c_{m}^{2}}{n_{m}}}
$$

$C^{\prime 2}$ is the sum of squares for the contrast.
We showed

$$
\frac{C}{\sqrt{\sigma^{2}\left(\frac{c_{1}^{2}}{n_{1}}+\frac{c_{2}^{2}}{n_{2}}+\cdots+\frac{c_{m}^{2}}{n_{m}}\right)}} \sim \mathcal{N}(0,1)
$$

And (in class)

$$
\frac{S S E}{\sigma^{2}} \sim \chi_{n-m}^{2}
$$

such that $\frac{(n-m) S_{E}^{2}}{\sigma^{2}}=\frac{S S E}{\sigma^{2}} \sim \chi_{n-m}^{2}$. Now please show that $\frac{C}{\sqrt{\sigma^{2}\left(\frac{c_{1}^{2}}{n_{1}}+\frac{c_{2}^{2}}{n_{2}}+\cdots+\frac{c_{m}^{2}}{n_{m}}\right)}}$ and S_{E}^{2} / σ^{2} are independent.

2 Multivariate normal distribution

Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ be a trivariate normal random variable with mean $\boldsymbol{\mu}_{\mathbf{X}}=(1,2,3)^{T}$ and covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

1. Find the mean and variance of the random variable $Y=2 X_{1}-X_{2}$.
2. Find the mean and covariance matrix of the random vector $\left(W_{1}, W_{2}\right)=\left(X_{1}, X_{2}+X_{3}\right)$. Are W_{1} and W_{2} independent?
